Maison  >  Article  >  développement back-end  >  Pandas+Pyecharts | Visualisation des données météorologiques historiques de Pékin au cours des cinq dernières années

Pandas+Pyecharts | Visualisation des données météorologiques historiques de Pékin au cours des cinq dernières années

Python当打之年
Python当打之年avant
2023-08-09 15:29:26834parcourir

Ce numéro utilise la bibliothèque de visualisation pyecharts de Python pour dessiner les données météorologiques historiques de Pékin et jeter un œil aux hautes températures historiques, distribution historique des basses températures et énergie éolienne et direction de jour comme de nuit Distribution et autres situations , J'espère que cela sera utile à tout le monde. Si vous avez des questions ou des domaines à améliorer, vous pouvez contacter l'éditeur.

Bibliothèques impliquées :
Pandas — Traitement des données
Pyecharts — Visualisation des données

Traitement des données Pandas

2.1 Lire les données
import pandas as pd
from pyecharts.charts import Line
from pyecharts.charts import Bar
from pyecharts.charts import Scatter
from pyecharts.charts import Pie
from pyecharts.charts import EffectScatter
from pyecharts.charts import Calendar
from pyecharts.charts import Polar
from pyecharts import options as opts
import warnings
warnings.filterwarnings('ignore')
Un total de 1839 données météorologiques historiques pour les cinq années 2018 -2022
.

2.2 Traitement des données de température minimale et maximale
df_weather_1 = df_weather.copy()
df_weather_1[['最低气温','最高气温']] = df_weather_1['最低气温/最高气温'].str.split(' / ',expand=True) 
df_weather_1['最低气温'] = df_weather_1['最低气温'].str[:-2]
df_weather_1['最高气温'] = df_weather_1['最高气温'].str[:-1]
df_weather_1['最低气温'] = df_weather_1['最低气温'].astype('int')
df_weather_1['最高气温'] = df_weather_1['最高气温'].astype('int')

Pandas+Pyecharts | Visualisation des données météorologiques historiques de Pékin au cours des cinq dernières années

2.3 处理日期数据

df_weather_1['日期'] = pd.to_datetime(df_weather_1['日期'],format='%Y年%m月%d日')
df_weather_1['日期s'] = df_weather_1['日期'].dt.strftime('%Y/%m/%d')
Pandas+Pyecharts | Visualisation des données météorologiques historiques de Pékin au cours des cinq dernières années
2.4 处理风力风向数据

Pandas+Pyecharts | Visualisation des données météorologiques historiques de Pékin au cours des cinq dernières années

3. Pyecharts数据可视化

3.1 2018-2022年历史温度分布
def get_scatter():
    scatter = (
        Scatter()
        .add_xaxis(x_data)
        .add_yaxis("最低气温", y_data1)
        .add_yaxis("最高气温", y_data2)
        .set_global_opts(
            legend_opts=opts.LegendOpts(is_show=False),
            visualmap_opts=opts.VisualMapOpts(
                is_show=False,
                range_color=range_color
            ),
            title_opts=opts.TitleOpts(
                title='1-2018-2022年历史温度分布',
                subtitle='-- 制图@公众号:Python当打之年 --',
                pos_top='1%',
                pos_left="1%",
            )
        )
    )

Pandas+Pyecharts | Visualisation des données météorologiques historiques de Pékin au cours des cinq dernières années

3.2 2022年历史温度分布

Pandas+Pyecharts | Visualisation des données météorologiques historiques de Pékin au cours des cinq dernières années

历史最高温度39℃,历史最低温度-12℃。
3.3 2021年历史温度分布
def get_calendar():
    calendar = (
        Calendar()
        .add('',
             data_21,
             calendar_opts=opts.CalendarOpts(
                 pos_right='5%',
                 range_='2021',
                daylabel_opts=opts.CalendarDayLabelOpts(name_map='cn'),
                monthlabel_opts=opts.CalendarMonthLabelOpts(name_map='cn')
             ),
        )
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title='3-2021年历史温度分布',
                subtitle='-- 制图@公众号:Python当打之年 --',
                pos_top='1%',
                pos_left="1%",
            ),
            visualmap_opts=opts.VisualMapOpts(
                range_color=range_color,
            )
        )
    )

Pandas+Pyecharts | Visualisation des données météorologiques historiques de Pékin au cours des cinq dernières années

3.4 2019年历史温度分布
Pandas+Pyecharts | Visualisation des données météorologiques historiques de Pékin au cours des cinq dernières années

3.5 2022年夜间_白天风力分布

def get_pie():
    pie = (
        Pie()
        .add(
            "",
            [list(z) for z in zip(x_data, y_data1)],
            radius=["30%", "50%"],
            center=["30%", "55%"],
        )
        .add(
            "",
            [list(z) for z in zip(x_data, y_data2)],
            radius=["30%", "50%"],
            center=["70%", "55%"],
        )
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title='5-2022年夜间_白天风力分布',
                subtitle='-- 制图@公众号:Python当打之年 --',
                pos_top='1%',
                pos_left="1%",
            ),
            legend_opts=opts.LegendOpts(pos_top='10%'),
            visualmap_opts=opts.VisualMapOpts(
                is_show=False,
                range_color=range_color
            ),
        )
    )

Pandas+Pyecharts | Visualisation des données météorologiques historiques de Pékin au cours des cinq dernières années

3.6 2022年夜间风向分布
def get_polor():
    polor = (
        Polar()
        .add("", values,type_="bar")
        .set_global_opts(
            legend_opts=opts.LegendOpts(is_show=False),
            visualmap_opts=opts.VisualMapOpts(
                is_show=False,
                range_color=range_color
            ),
            title_opts=opts.TitleOpts(
                title='6-2022年夜间风向分布',
                subtitle='-- 制图@公众号:Python当打之年 --',
                pos_top='1%',
                pos_left="1%",
            ),
        )
    )
Pandas+Pyecharts | Visualisation des données météorologiques historiques de Pékin au cours des cinq dernières années

3.7 2022年白天风向分布

Pandas+Pyecharts | Visualisation des données météorologiques historiques de Pékin au cours des cinq dernières années

3.8 2018-2022年各类型天气数量

def get_bar():
    bar = (
        Bar()
        .add_xaxis(x_data)
        .add_yaxis("",y_data)
        .set_global_opts(
            visualmap_opts=opts.VisualMapOpts(
                is_show=False,
                range_color=range_color
            ),
            legend_opts=opts.LegendOpts(is_show=False),
            title_opts=opts.TitleOpts(
                title='8-2018-2022年各类型天气数量',
                subtitle='-- 制图@公众号:Python当打之年 --',
                pos_top='1%',
                pos_left="1%",
            ),
        )
    )
Pandas+Pyecharts | Visualisation des données météorologiques historiques de Pékin au cours des cinq dernières années

3.9 2018-2022年每月平均最高温度

Pandas+Pyecharts | Visualisation des données météorologiques historiques de Pékin au cours des cinq dernières années

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration:
Cet article est reproduit dans:. en cas de violation, veuillez contacter admin@php.cn Supprimer