


Cet article présente principalement l'explication détaillée de read_excel dans Python 2.7 pandas. Il a une certaine valeur de référence. Maintenant, je le partage avec vous. Les amis dans le besoin peuvent s'y référer
Importer. Module pandas :
import pandas as pd
Utilisez import pour lire le module pandas et utilisez son abréviation pd pour plus de commodité.
Lire le fichier Excel à traiter :
df = pd.read_excel('log.xls')
En utilisant read_excel La fonction lit le fichier Excel et doit être remplacée par le chemin où se trouve le fichier Excel. Après lecture, il devient un objet Pandas DataFrame. DataFrame est une structure de tableau bidimensionnel orientée colonnes et contient des listes et des étiquettes de ligne. Les opérations sur les fichiers Excel sont converties en opérations sur DataFrame. De plus, si un Excel contient plusieurs tableaux, si vous ne souhaitez en lire qu'un seul :
df = pd.read_excel('log.xls', sheetname=1)
Un paramètre nom de feuille est ajouté, ce qui signifie que Le le nombre de tables commence à compter à partir de 0. Ce que j'ai défini ci-dessus est 1, qui est le deuxième tableau.
Après la lecture, vous pouvez d'abord vérifier les informations d'en-tête et le type de données de chaque colonne :
df.dtypes
Le résultat est le suivant :
Member object Unnamed: 1 float64 Unnamed: 2 float64 Unnamed: 3 float64 Unnamed: 4 float64 Unnamed: 5 float64 家内外活动类型 object Unnamed: 7 object activity object dtype: object
Extraire la dernière ligne de données qui apparaît en continu pour chaque membre :
new_df = df.drop_duplicates(subset='Member', keep='last')
L'instruction ci-dessus signifie supprimer les lignes redondantes en fonction du champ Membre et conserver la dernière ligne de données dans la même ligne. Cela obtiendra les données de la dernière ligne de chaque membre et renverra le DataFrame filtré.
Ensuite, vous devez enregistrer les résultats traités sous forme de fichier Excel :
out = pd.ExcelWriter('output.xls') new_df.to_excel(out) out.save()
output.xls est le nom du fichier que vous souhaitez enregistrer, vous pouvez en choisir un ; puis enregistrer le contenu du DataFrame dans le fichier, et enfin enregistrer le fichier sur le disque système.
Ensuite, vous verrez un nouveau fichier dans le répertoire actuel, qui peut être ouvert et visualisé directement à l'aide d'Excel.
Pandas fournit également de nombreuses API. Vous pouvez rechercher dans la documentation de l'API et trouver la fonction appropriée pour effectuer la tâche en fonction de la tâche spécifique.
Ci-joint : Un exemple complet
#coding=utf-8 import pandas as pd # 读入excel文件中的第2个表 df = pd.read_excel('log.xls', sheetname=1) # 查看表的数据类型 print df.dtypes # 查看Member列的数据 print df['Member'] ''' # 新建一列,每一行的值是Member列和activity列相同行值的和 for i in df.index: df['activity_2'][i] = df['Member'][i] + df['activity'][i] ''' # 根据Member字段去除掉多余的行,并且保留相同行的最后一行数据 new_df = df.drop_duplicates(subset='Member', keep='last') # 导出结果 out = pd.ExcelWriter('output.xls') new_df.to_excel(out) out.save()
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

ArraySinpython, en particulier Vianumpy, arecrucialinsciciencomputingfortheirefficiency andversatity.1) ils sont les opérations de data-analyse et la machineauning.2)

Vous pouvez gérer différentes versions Python en utilisant Pyenv, Venv et Anaconda. 1) Utilisez PYENV pour gérer plusieurs versions Python: installer PYENV, définir les versions globales et locales. 2) Utilisez VENV pour créer un environnement virtuel pour isoler les dépendances du projet. 3) Utilisez Anaconda pour gérer les versions Python dans votre projet de science des données. 4) Gardez le Système Python pour les tâches au niveau du système. Grâce à ces outils et stratégies, vous pouvez gérer efficacement différentes versions de Python pour assurer le bon fonctionnement du projet.

NumpyArrayShaveSeveralAdvantages OverStandardPyThonarRays: 1) TheaReMuchfasterDuetoc-bases Implementation, 2) Ils sont économisés par le therdémor

L'impact de l'homogénéité des tableaux sur les performances est double: 1) L'homogénéité permet au compilateur d'optimiser l'accès à la mémoire et d'améliorer les performances; 2) mais limite la diversité du type, ce qui peut conduire à l'inefficacité. En bref, le choix de la bonne structure de données est crucial.

Tocraftexecutablepythonscripts, suivant les autres proches: 1) addashebangline (#! / Usr / bin / leppython3) tomakethescriptexecutable.2) setpermisessionswithchmod xyour_script.py.3) organisationwithacleardocstringanduseifname == "__ __" Main __ ".

NumpyArraysarebetterFornumericalOperations andMulti-dimensionaldata, tandis que la réalisation de la réalisation

NumpyArraysareBetterForheAVYVumericalComputing, tandis que la réalisation de points contraints de réalisation.1) NumpyArraySoFerversATACTORATIONS ajusté pour les données

CTYPESALLOWSCREATINGAndMANIPulationc-styLearRaySInpython.1) UsectypeStOinterfaceWithClibraryForPerformance.2) Createc-stylearRaysFornumericalComptations.3) PassArrayStocfunction


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Adaptateur de serveur SAP NetWeaver pour Eclipse
Intégrez Eclipse au serveur d'applications SAP NetWeaver.

Version Mac de WebStorm
Outils de développement JavaScript utiles

SublimeText3 Linux nouvelle version
Dernière version de SublimeText3 Linux

MinGW - GNU minimaliste pour Windows
Ce projet est en cours de migration vers osdn.net/projects/mingw, vous pouvez continuer à nous suivre là-bas. MinGW : un port Windows natif de GNU Compiler Collection (GCC), des bibliothèques d'importation et des fichiers d'en-tête librement distribuables pour la création d'applications Windows natives ; inclut des extensions du runtime MSVC pour prendre en charge la fonctionnalité C99. Tous les logiciels MinGW peuvent fonctionner sur les plates-formes Windows 64 bits.
