Maison > Article > développement back-end > Quelles sont les méthodes pour implémenter un arbre de recherche binaire en python
L'arbre est différent de la liste chaînée ou de la table de hachage. Il s'agit d'une structure de données non linéaire qui est divisée en arbre binaire, arbre de recherche binaire, arbre B, arbre B+. , arbres rouges et noirs et ainsi de suite.
Un arbre est une structure de données, qui est un ensemble de relations hiérarchiques composées de n nœuds limités. Si vous utilisez une image pour le représenter, vous pouvez voir qu’il ressemble à un arbre à l’envers. Par conséquent, nous appelons collectivement ce type de structure de données un arbre, avec la racine en haut et les feuilles en bas. Un arbre général a les caractéristiques suivantes :
Chaque nœud a 0 ou plusieurs nœuds enfants
Aucun. Le nœud du nœud parent est appelé nœud racine. 🎜#Chaque nœud enfant peut être divisé en plusieurs sous-arbres disjoints
La définition d'un arbre binaire est la suivante : chaque nœud a au plus deux nœuds enfants. Autrement dit, chaque nœud ne peut avoir que les quatre situations suivantes :
Le sous-arbre de gauche et le sous-arbre de droite sont vides
class Node: def __init__(self, data): self.data = data self.left = None self.right = None class BST: def __init__(self): self.root = None def insert(self, value): if self.root is None: self.root = Node(value) else: self._insert(value, self.root) def _insert(self, value, node): if value < node.data: if node.left is None: node.left = Node(value) else: self._insert(value, node.left) elif value > node.data: if node.right is None: node.right = Node(value) else: self._insert(value, node.right) def search(self, value): if self.root is None: return False else: return self._search(value, self.root) def _search(self, value, node): if node is None: return False elif node.data == value: return True elif value < node.data: return self._search(value, node.left) else: return self._search(value, node.right) def delete(self, value): if self.root is None: return False else: self.root = self._delete(value, self.root) def _delete(self, value, node): if node is None: return node elif value < node.data: node.left = self._delete(value, node.left) elif value > node.data: node.right = self._delete(value, node.right) else: if node.left is None and node.right is None: del node return None elif node.left is None: temp = node.right del node return temp elif node.right is None: temp = node.left del node return temp else: temp = self._find_min(node.right) node.data = temp.data node.right = self._delete(temp.data, node.right) return node def _find_min(self, node): while node.left is not None: node = node.left return node
2. Utilisez une liste pour implémenter
class BST: def __init__(self): self.values = [] def insert(self, value): if len(self.values) == 0: self.values.append(value) else: self._insert(value, 0) def _insert(self, value, index): if value < self.values[index]: left_child_index = 2 * index + 1 if left_child_index >= len(self.values): self.values.extend([None] * (left_child_index - len(self.values) + 1)) if self.values[left_child_index] is None: self.values[left_child_index] = value else: self._insert(value, left_child_index) else: right_child_index = 2 * index + 2 if right_child_index >= len(self.values): self.values.extend([None] * (right_child_index - len(self.values) + 1)) if self.values[right_child_index] is None: self.values[right_child_index] = value else: self._insert(value, right_child_index) def search(self, value): if value in self.values: return True else: return False def delete(self, value): if value not in self.values: return False else: index = self.values.index(value) self._delete(index) return True def _delete(self, index): left_child_index = 2 * index + 1 right_child_index = 2 * index + 2 if left_child_index < len(self.values) and self.values[left_child_index] is not None: self._delete(left_child_index) if right_child_index < len(self.values) and self.values[right_child_index] is not None: self
def insert(tree, value): if not tree: return {value: {}} elif value < list(tree.keys())[0]: tree[list(tree.keys())[0]] = insert(tree[list(tree.keys())[0]], value) else: tree[list(tree.keys())[0]][value] = {} return tree def search(tree, value): if not tree: return False elif list(tree.keys())[0] == value: return True elif value < list(tree.keys())[0]: return search(tree[list(tree.keys())[0]], value) else: return search(tree[list(tree.keys())[0]].get(value), value) def delete(tree, value): if not search(tree, value): return False else: if list(tree.keys())[0] == value: if not tree[list(tree.keys())[0]]: del tree[list(tree.keys())[0]] elif len(tree[list(tree.keys())[0]]) == 1: tree[list(tree.keys())[0]] = list(tree[list(tree.keys())[0]].values())[0] else: min_key = min(list(tree[list(tree.keys())[0]+1].keys())) tree[min_key] = tree[list(tree.keys())[0]+1][min_key] tree[min_key][list(tree.keys())[0]] = tree[list(tree.keys())[0]] del tree[list(tree.keys())[0]] elif value < list(tree.keys())[0]: tree[list(tree.keys())[0]] = delete(tree[list(tree.keys())[0]], value) else: tree[list(tree.keys())[0]][value] = delete(tree[list(tree.keys())[0]].get(value), value) return tree
Étant donné que le dictionnaire n'est pas ordonné, cette implémentation peut entraîner un déséquilibre de l'arbre de recherche binaire, affectant l'efficacité des opérations d'insertion, de recherche et de suppression.
En utilisant la pile (Stack), un simple arbre de recherche binaire peut être implémenté et des opérations telles que l'insertion, la recherche et la suppression peuvent être implémentées de manière itérative. Le processus de mise en œuvre spécifique est le suivant :
Définissez une classe de nœud, y compris la valeur du nœud, les sous-nœuds gauche et droit et d'autres attributs.
Ce qui suit est un exemple de pseudocode :
class Node: def __init__(self, data): self.data = data self.left = None self.right = None def insert(root, value): if not root: return Node(value) stack = [root] while stack: node = stack.pop() if value < node.data: if node.left is None: node.left = Node(value) break else: stack.append(node.left) elif value > node.data: if node.right is None: node.right = Node(value) break else: stack.append(node.right) def search(root, value): stack = [root] while stack: node = stack.pop() if node.data == value: return True elif value < node.data and node.left: stack.append(node.left) elif value > node.data and node.right: stack.append(node.right) return False def delete(root, value): if root is None: return None if value < root.data: root.left = delete(root.left, value) elif value > root.data: root.right = delete(root.right, value) else: if root.left is None: temp = root.right del root return temp elif root.right is None: temp = root.left del root return temp else: temp = root.right while temp.left is not None: temp = temp.left root.data = temp.data root.right = delete(root.right, temp.data) return root
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!