


Quelle est la différence entre les variables de retard et les listes chaînées free_list en Python3 ?
1. Concept
1. Différence
En Python3, "delay variable" et "free_list linked list" sont deux concepts différents, et il n'y a pas de lien direct entre eux.
2. Évaluation paresseuse
Une variable paresseuse signifie que dans certains cas, Python ne calculera pas la valeur de l'expression immédiatement, mais attendra que la valeur soit nécessaire. Cette approche est appelée « évaluation paresseuse » ou « évaluation différée ».
Par exemple : le générateur est une méthode de calcul différé.
Lorsqu'un objet générateur est créé, il ne générera pas toutes les valeurs immédiatement, mais une par une en cas de besoin. L'avantage de cette méthode est : économiser de l'espace mémoire et des ressources informatiques
3. free_list La liste chaînée est un mécanisme de gestion de mémoire en Python3. Un mécanisme de garbage collection est utilisé pour gérer automatiquement l'espace mémoire. La liste chaînée free_list est un mécanisme qui peut réutiliser les blocs de mémoire alloués mais inutilisés.
Lorsqu'un nouvel objet est créé, Python alloue un espace mémoire et le marque comme utilisé. Lorsqu'un objet n'est plus référencé, Python le marque automatiquement comme inutilisé et l'ajoute à la free_list. Lorsqu'un objet sera créé la prochaine fois, Python vérifiera d'abord s'il existe un bloc de mémoire réutilisable dans la liste chaînée free_list, évitant ainsi les opérations inutiles d'allocation de mémoire et de libération.2. Exemple
1. Exemple de variable de retard
Dans cet exemple, une fonction génératrice fibonacci()
est définie pour implémenter la logique de génération de la séquence de Fibonacci. Lorsque nous créons un objet générateur fib
, il ne générera pas toutes les valeurs de la séquence de Fibonacci en même temps, mais une par une en cas de besoin. Ici, nous utilisons la fonction next()
pour obtenir la prochaine valeur de la séquence de Fibonacci.
# 定义一个生成器,实现斐波那契数列 def fibonacci(): a, b = 0, 1 while True: yield a a , b = b, a+b #创建一个生成器对象 fib = fibonacci() #打印前 10 个斐波那契数列数值 for i in range(10): print(next(fib)) ''' 执行结果如下: 0 1 1 2 3 5 8 13 21 34 '''
2.free_list linked listfibonacci()
,实现了斐波那契数列的生成逻辑。当我们创建一个生成器对象 fib
时,它不会立即生成所有的斐波那契数列数值,而是在需要时逐个生成。在这里,我们使用了 next()
函数来获取下一个斐波那契数列数值。
import sys import gc #创建两个相同的列表对象 a = [1, 2, 3] b = [1, 2, 3] #打印a和b对象的内存地址 print("a 的内存地址:", id(a)) print("b 的内存地址:", id(b)) #将a 对象从内存中删除 del a # 创建一个新的列表对象 c # 强制进行垃圾回收 gc.collect() c = [1, 2, 3] #打印 c 对象的内存地址 print("c 的内存地址:", id(c)) #检查 free_list 链表中是否有可重复利用的内存块 print("free_list 链表:", sys.getsizeof([])) ''' 执行结果如下: a 的内存地址: 22203400 b 的内存地址: 22201928 c 的内存地址: 21904648 free_list 链表: 64 '''
2.free_list链表
在这个示例中,我们先创建了两个相同的列表对象 a
和 b
,并打印它们的内存地址。然后,我们将 a
对象从内存中删除,并使用 gc.collect()
强制进行垃圾回收。接着,我们创建了一个新的列表对象 c
,并打印它的内存地址。最后,我们使用 sys.getsizeof([])
函数检查 free_list 链表中是否有可重复利用的内存块
rrreee🎜🎜
gc.collect()
可以强制进行垃圾回收,但并不意味着内存会立即被清空。Python 中的内存管理是由解释器和操作系统共同管理的,具体的内存分配和回收时机也受到多种因素的影响,如垃圾回收器算法、系统内存使用情况等。在上面的示例中,当我们删除
a
对象并调用gc.collect()
进行垃圾回收时,Python 解释器会将a
对象所占用的内存标记为可回收状态,并将其添加到垃圾回收器的待回收列表中。但是,这并不意味着内存立即被回收,而是在垃圾回收器的下一轮回收时才会被清理。另外,即使
a
对象所占用的内存被回收了,也不一定意味着该内存空间被立即释放,因为 Python 中的内存管理采用了一种延迟分配的机制,即只有当需要申请更多内存时,Python 才会向操作系统请求分配新的内存空间。因此,在上面的示例中,虽然a
对象的内存空间可能已经被回收,但该内存空间可能仍然被 Python 解释器保留以供未来使用,从而避免不必要的内存分配和释放开销。需要注意的是,即使
Dans cet exemple, nous créons d'abord deux objets de liste identiquesa
、b
、c
a
etb
et imprimons leurs adresses mémoire. Nous supprimons ensuite l'objeta
de la mémoire et forçons le garbage collection en utilisantgc.collect()
. Ensuite, nous créons un nouvel objet listec
et imprimons son adresse mémoire. Enfin, nous utilisons la fonctionsys.getsizeof([])
pour vérifier s'il existe des blocs de mémoire réutilisables dans la liste free_list
gc.collect()
peut être Le garbage collection forcé ne signifie pas que la mémoire sera effacée immédiatement. La gestion de la mémoire en Python est gérée conjointement par l'interpréteur et le système d'exploitation. L'allocation spécifique de la mémoire et le calendrier de recyclage sont également affectés par divers facteurs, tels que l'algorithme du garbage collector, l'utilisation de la mémoire système, etc. 🎜🎜 Dans l'exemple ci-dessus, lorsque nous supprimons l'objet a
et appelons gc.collect()
pour le garbage collection, l'interpréteur Python codera> La mémoire occupée par l'objet est marqué comme recyclable et ajouté à la liste des déchets à recycler du éboueur. Cependant, cela ne signifie pas que la mémoire est récupérée immédiatement, mais qu'elle sera nettoyée lors du prochain cycle de collecte par le ramasse-miettes. 🎜🎜 De plus, même si la mémoire occupée par l'objet a
est recyclée, cela ne signifie pas forcément que l'espace mémoire est libéré immédiatement, car la gestion de la mémoire en Python adopte un mécanisme d'allocation différée, qui c'est-à-dire que ce n'est que lorsque plus de mémoire doit être demandée que Python demandera au système d'exploitation d'allouer un nouvel espace mémoire. Par conséquent, dans l'exemple ci-dessus, même si l'espace mémoire de l'objet a
a pu être récupéré, l'espace mémoire peut toujours être réservé par l'interpréteur Python pour une utilisation future, évitant ainsi une allocation de mémoire inutile et une surcharge de libération. . 🎜🎜 Il est à noter que même si les adresses mémoire des trois objets a
, b
et c
ne se chevauchent pas, cela ne signifient qu'ils occupent Les espaces mémoire ne se chevaucheront pas. En effet, la méthode de gestion de la mémoire en Python est allouée et gérée en unités d'objets. L'espace mémoire occupé par chaque objet peut être discontinu, de sorte que les espaces mémoire des différents objets peuvent se chevaucher partiellement. 🎜🎜Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Vous pouvez apprendre les concepts de programmation de base et les compétences de Python dans les 2 heures. 1. Apprenez les variables et les types de données, 2. Flux de contrôle maître (instructions et boucles conditionnelles), 3. Comprenez la définition et l'utilisation des fonctions, 4. Démarrez rapidement avec la programmation Python via des exemples simples et des extraits de code.

Python est largement utilisé dans les domaines du développement Web, de la science des données, de l'apprentissage automatique, de l'automatisation et des scripts. 1) Dans le développement Web, les cadres Django et Flask simplifient le processus de développement. 2) Dans les domaines de la science des données et de l'apprentissage automatique, les bibliothèques Numpy, Pandas, Scikit-Learn et Tensorflow fournissent un fort soutien. 3) En termes d'automatisation et de script, Python convient aux tâches telles que les tests automatisés et la gestion du système.

Vous pouvez apprendre les bases de Python dans les deux heures. 1. Apprenez les variables et les types de données, 2. Structures de contrôle maître telles que si les instructions et les boucles, 3. Comprenez la définition et l'utilisation des fonctions. Ceux-ci vous aideront à commencer à écrire des programmes Python simples.

Comment enseigner les bases de la programmation novice en informatique dans les 10 heures? Si vous n'avez que 10 heures pour enseigner à l'informatique novice des connaissances en programmation, que choisissez-vous d'enseigner ...

Comment éviter d'être détecté lors de l'utilisation de FiddlereVerywhere pour les lectures d'homme dans le milieu lorsque vous utilisez FiddlereVerywhere ...

Chargement des fichiers de cornichons dans Python 3.6 Rapport de l'environnement Erreur: modulenotFoundError: NomoduLenamed ...

Comment résoudre le problème de la segmentation des mots jieba dans l'analyse des commentaires pittoresques? Lorsque nous effectuons des commentaires et des analyses pittoresques, nous utilisons souvent l'outil de segmentation des mots jieba pour traiter le texte ...

Comment utiliser l'expression régulière pour correspondre à la première étiquette fermée et à s'arrêter? Lorsque vous traitez avec HTML ou d'autres langues de balisage, des expressions régulières sont souvent nécessaires pour ...


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Télécharger la version Mac de l'éditeur Atom
L'éditeur open source le plus populaire

mPDF
mPDF est une bibliothèque PHP qui peut générer des fichiers PDF à partir de HTML encodé en UTF-8. L'auteur original, Ian Back, a écrit mPDF pour générer des fichiers PDF « à la volée » depuis son site Web et gérer différentes langues. Il est plus lent et produit des fichiers plus volumineux lors de l'utilisation de polices Unicode que les scripts originaux comme HTML2FPDF, mais prend en charge les styles CSS, etc. et présente de nombreuses améliorations. Prend en charge presque toutes les langues, y compris RTL (arabe et hébreu) et CJK (chinois, japonais et coréen). Prend en charge les éléments imbriqués au niveau du bloc (tels que P, DIV),

MantisBT
Mantis est un outil Web de suivi des défauts facile à déployer, conçu pour faciliter le suivi des défauts des produits. Cela nécessite PHP, MySQL et un serveur Web. Découvrez nos services de démonstration et d'hébergement.

Dreamweaver Mac
Outils de développement Web visuel

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit