Golang implémente CNN
Le deep learning joue un rôle essentiel dans le domaine de l'informatique. Dans le domaine de la vision par ordinateur, le réseau de neurones convolutifs (CNN) est une technologie très populaire. Dans cet article, nous étudierons comment implémenter un CNN à l'aide de Golang.
Pour comprendre CNN, nous devons d'abord comprendre l'opération de convolution. L'opération de convolution est l'opération de base de CNN. Les données d'entrée peuvent être multipliées par le noyau en faisant glisser le noyau pour générer la carte des caractéristiques de sortie. Dans Golang, nous pouvons utiliser GoCV pour traiter des images. GoCV est une bibliothèque Golang écrite par la bibliothèque OpenCV C++, spécialisée pour la vision par ordinateur et le traitement d'images.
Dans GoCV, nous pouvons utiliser le type Mat pour représenter des images et des cartes de caractéristiques. Le type Mat est une matrice multidimensionnelle pouvant stocker les valeurs d'un ou plusieurs canaux. Dans CNN, trois couches de Mat sont généralement utilisées : l'entrée Mat, le noyau de convolution Mat et la sortie Mat. Nous pouvons implémenter l'opération de convolution en multipliant l'entrée Mat et le noyau de convolution Mat, puis en accumulant le résultat dans la sortie Mat.
Ce qui suit est une fonction de convolution simple implémentée à l'aide de Golang :
func convolve(input, kernel *gocv.Mat, stride int) *gocv.Mat { out := gocv.NewMatWithSize((input.Rows()-kernel.Rows())/stride+1, (input.Cols()-kernel.Cols())/stride+1, gocv.MatTypeCV32F) for row := 0; row <p>Dans cette fonction de convolution simple, nous saisirons Mat et le noyau de convolution Mat comme paramètres d'entrée et spécifierons la taille du pas de mouvement. Nous parcourons chaque élément du Mat de sortie, multiplions le Mat d'entrée et le noyau de convolution Mat et les accumulons dans le Mat de sortie. Enfin, nous afficherons Mat comme valeur de retour de la fonction. </p><p>Voyons maintenant comment utiliser la fonction de convolution pour implémenter un CNN. Nous utiliserons Golang pour implémenter un simple CNN à deux couches pour classer les chiffres manuscrits. </p><p>Notre réseau sera composé de deux couches convolutives et de deux couches entièrement connectées. Après la première couche convolutive, nous appliquerons une couche de pooling maximum pour réduire la taille des données. Après la deuxième couche convolutive, nous effectuons un pooling moyen sur les données pour réduire davantage la taille des données. Enfin, nous utiliserons deux couches entièrement connectées pour classer les données d'entités. </p><p>Ce qui suit est le code d'un CNN simple implémenté à l'aide de Golang : </p><pre class="brush:php;toolbar:false">func main() { inputSize := image.Point{28, 28} batchSize := 32 trainData, trainLabels, testData, testLabels := loadData() batchCount := len(trainData) / batchSize conv1 := newConvLayer(inputSize, 5, 20, 1) pool1 := newMaxPoolLayer(conv1.outSize, 2) conv2 := newConvLayer(pool1.outSize, 5, 50, 1) pool2 := newAvgPoolLayer(conv2.outSize, 2) fc1 := newFcLayer(pool2.totalSize(), 500) fc2 := newFcLayer(500, 10) for i := 0; i <p>Dans cette implémentation simple de CNN, nous utilisons l'opération Mat sous-jacente pour l'implémenter. Nous appelons d’abord la fonction loadData pour charger les données d’entraînement et de test. Ensuite, nous définissons la structure de la couche convolutive, de la couche de pooling et de la couche entièrement connectée. Nous parcourons tous les lots de données et les introduisons dans le réseau à l'aide d'une nouvelle fonction de prétraitement. Enfin, nous utilisons l’algorithme de rétropropagation pour calculer les gradients et mettre à jour les poids et biais. </p><p>Résumé : </p><p>Dans cet article, nous avons découvert les principes de base des opérations de convolution et de CNN, et implémenté un CNN simple à l'aide de Golang. Nous utilisons l'opération Mat sous-jacente pour calculer les opérations de convolution et de pooling, et utilisons l'algorithme de rétropropagation pour mettre à jour les poids et les biais. En implémentant ce simple CNN, nous pouvons mieux comprendre les réseaux de neurones et commencer à explorer des CNN plus avancés. </p>
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Les principales différences entre Golang et Python sont les modèles de concurrence, les systèmes de type, les performances et la vitesse d'exécution. 1. Golang utilise le modèle CSP, qui convient aux tâches simultanées élevées; Python s'appuie sur le multi-threading et Gil, qui convient aux tâches à forte intensité d'E / S. 2. Golang est un type statique, et Python est un type dynamique. 3. La vitesse d'exécution du langage compilée de Golang est rapide, et le développement du langage interprété par Python est rapide.

Golang est généralement plus lent que C, mais Golang présente plus d'avantages dans l'efficacité de programmation et de développement simultanée: 1) Le modèle de collecte et de concurrence de Golang de Golang le fait bien fonctionner dans des scénarios à haute concurrence; 2) C obtient des performances plus élevées grâce à la gestion manuelle de la mémoire et à l'optimisation matérielle, mais a une complexité de développement plus élevée.

Golang est largement utilisé dans le cloud computing et DevOps, et ses avantages résident dans la simplicité, l'efficacité et les capacités de programmation simultanées. 1) Dans le cloud computing, Golang gère efficacement les demandes simultanées via les mécanismes de goroutine et de canal. 2) Dans DevOps, les fonctionnalités de compilation rapide de Golang et de plate-forme en font le premier choix pour les outils d'automatisation.

Golang et C ont chacun leurs propres avantages dans l'efficacité du rendement. 1) Golang améliore l'efficacité par le goroutine et la collecte des ordures, mais peut introduire un temps de pause. 2) C réalise les hautes performances grâce à la gestion et à l'optimisation manuelles, mais les développeurs doivent faire face aux fuites de mémoire et à d'autres problèmes. Lors du choix, vous devez considérer les exigences du projet et la pile de technologies d'équipe.

Golang convient plus à des tâches de concurrence élevées, tandis que Python présente plus d'avantages dans la flexibilité. 1. Golang gère efficacement la concurrence par le goroutine et le canal. 2. Python repose sur le filetage et l'asyncio, qui est affecté par GIL, mais fournit plusieurs méthodes de concurrence. Le choix doit être basé sur des besoins spécifiques.

Les différences de performance entre Golang et C se reflètent principalement dans la gestion de la mémoire, l'optimisation de la compilation et l'efficacité du temps d'exécution. 1) Le mécanisme de collecte des ordures de Golang est pratique mais peut affecter les performances, 2) la gestion manuelle de C et l'optimisation du compilateur sont plus efficaces dans l'informatique récursive.

ChooseGolangForHighPerformanceAnd Concurrence, IdealForBackendServices andNetworkProgramming; selectPythonForrapidDevelopment, dataScience et MachineLearningDuetOtsSertilityAnStensiveLibrarary.

Golang et Python ont chacun leurs propres avantages: Golang convient aux performances élevées et à la programmation simultanée, tandis que Python convient à la science des données et au développement Web. Golang est connu pour son modèle de concurrence et ses performances efficaces, tandis que Python est connu pour sa syntaxe concise et son écosystème de bibliothèque riche.


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Version Mac de WebStorm
Outils de développement JavaScript utiles

Dreamweaver CS6
Outils de développement Web visuel

Télécharger la version Mac de l'éditeur Atom
L'éditeur open source le plus populaire

DVWA
Damn Vulnerable Web App (DVWA) est une application Web PHP/MySQL très vulnérable. Ses principaux objectifs sont d'aider les professionnels de la sécurité à tester leurs compétences et leurs outils dans un environnement juridique, d'aider les développeurs Web à mieux comprendre le processus de sécurisation des applications Web et d'aider les enseignants/étudiants à enseigner/apprendre dans un environnement de classe. Application Web sécurité. L'objectif de DVWA est de mettre en pratique certaines des vulnérabilités Web les plus courantes via une interface simple et directe, avec différents degrés de difficulté. Veuillez noter que ce logiciel

Navigateur d'examen sécurisé
Safe Exam Browser est un environnement de navigation sécurisé permettant de passer des examens en ligne en toute sécurité. Ce logiciel transforme n'importe quel ordinateur en poste de travail sécurisé. Il contrôle l'accès à n'importe quel utilitaire et empêche les étudiants d'utiliser des ressources non autorisées.