Maison >développement back-end >Tutoriel Python >Résumé des points de connaissances multi-processus Python

Résumé des points de connaissances multi-processus Python

WBOY
WBOYavant
2022-05-17 17:49:142495parcourir

Cet article vous apporte des connaissances pertinentes sur python, qui présente principalement le contenu pertinent sur le multi-processus, y compris ce qu'est le multi-processus, la création de processus, la synchronisation inter-processus, le pool de processus, etc., ce qui suit est Prenons un écoutez, j'espère que cela aidera tout le monde.

Résumé des points de connaissances multi-processus Python

Apprentissage recommandé : Tutoriel vidéo Python

1. Qu'est-ce que le multi-processus ?

1. Processus

Programme : Par exemple, xxx.py est un programme, qui est un

Process statique : Après l'exécution d'un programme, le code + les ressources utilisées sont appelés processus, qui sont opérations Unité de base de l'allocation système des ressources. Non seulement le multitâche peut être effectué via des threads, mais des processus peuvent également être utilisés

2. Statut du processus

Pendant le travail, le nombre de tâches est souvent supérieur au nombre de cœurs du processeur, c'est-à-dire que certaines tâches doivent être en cours d'exécution. , tandis que d'autres tâches attendent que le CPU s'exécute, ce qui entraîne différents états
Résumé des points de connaissances multi-processus Python

  • État prêt : les conditions d'exécution ont ralenti et attendent que le CPU s'exécute
  • État d'exécution : le CPU exécute sa fonction
  • État d'attente : En attendant que certaines conditions soient remplies, comme un programme en veille, il est actuellement en état d'attente

2. Création de processus - multitraitement

1 Syntaxe de classe de processus. description

Module multiprocessing réussi Créez un objet Process et appelez sa méthode start() pour générer un processus, Process code> et <code>threading.Thread API identiques. multiprocessing 模块通过创建一个 Process 对象然后调用它的 start()方法来生成进程,Processthreading.Thread API 相同。

语法格式multiprocessing.Process(group=None, target=None, name=None, args=(), kwargs={}, *, daemon=None)

参数说明

  • group:指定进程组,大多数情况下用不到
  • target:如果传递了函数的引用,可以任务这个子进程就执行这里的代码
  • name:给进程设定一个名字,可以不设定
  • args:给target指定的函数传递的参数,以元组的方式传递
  • kwargs:给target指定的函数传递命名参数

multiprocessing.Process 对象具有如下方法和属性:

 : multiprocessing.Process(group=None, target=None, name=None, args=(), kwargs={}, *, daemon=None)
方法名/属性 说明
run() 进程具体执行的方法
start() 启动子进程实例(创建子进程)
join([timeout]) 如果可选参数 timeout 是默认值 None,则将阻塞至调用 join() 方法的进程终止;如果 timeout 是一个正数,则最多会阻塞 timeout 秒
name 当前进程的别名,默认为Process-N,N为从1开始递增的整数
pid 当前进程的pid(进程号)
is_alive() 判断进程子进程是否还在活着
exitcode 子进程的退出代码
daemon 进程的守护标志,是一个布尔值。
authkey 进程的身份验证密钥。
sentinel 系统对象的数字句柄,当进程结束时将变为 ready。
terminate() 不管任务是否完成,立即终止子进程
kill() 与 terminate() 相同,但在 Unix 上使用 SIGKILL 信号。
close() Format de syntaxe
Description du paramètre🎜 : 🎜🎜🎜group : Spécifie le groupe de processus, qui n'est pas utilisé dans la plupart des cas 🎜🎜target : Si une référence de fonction est passée, la la tâche peut être Ce processus enfant exécute le code ici🎜🎜name : définissez un nom pour le processus, vous n'avez pas besoin de le définir🎜🎜args : les paramètres passés à la fonction spécifiée par la cible, transmis sous forme de tuple 🎜🎜kwargs : transmet les paramètres nommés à la fonction spécifiée par la cible 🎜🎜🎜🎜multiprocessing. L'objet Process a les méthodes et attributs suivants : 🎜🎜 🎜🎜run( )🎜🎜Méthode d'exécution spécifique au processus 🎜🎜🎜start()🎜🎜Démarrer une instance de sous-processus (créer un sous-processus) 🎜🎜🎜join([timeout])🎜 🎜Si le paramètre facultatif timeout est la valeur par défaut None, il bloquera jusqu'à ce que le processus appelant la méthode join() se termine ; si le timeout est un nombre positif, il bloquera jusqu'à ; pour expirer les secondes🎜🎜🎜name🎜🎜L'alias du processus actuel, la valeur par défaut est Process-N, N est un entier croissant de 1🎜🎜🎜pid 🎜🎜Le pid (numéro de processus) du processus actuel🎜🎜🎜is_alive()🎜🎜Déterminez si le processus enfant du processus est toujours en vie🎜🎜🎜exitcode🎜🎜Le code de sortie du processus enfant🎜🎜🎜daemon🎜🎜Le drapeau démon du processus est une valeur booléenne. 🎜🎜🎜authkey🎜🎜La clé d'authentification du processus. 🎜🎜🎜sentinel🎜🎜Le handle numérique de l'objet système, qui sera prêt à la fin du processus. 🎜🎜🎜terminate()🎜🎜Terminer immédiatement le processus enfant, que la tâche soit terminée ou non🎜🎜🎜kill()🎜🎜Identique à terminate() , mais utilise le signal SIGKILL sous Unix. 🎜🎜🎜close()🎜🎜Fermez l'objet Process et libérez toutes les ressources qui lui sont associées🎜🎜🎜🎜

2. Deux boucles while sont exécutées ensemble

# -*- coding:utf-8 -*-from multiprocessing import Processimport timedef run_proc():
    """子进程要执行的代码"""
    while True:
        print("----2----")
        time.sleep(1)if __name__=='__main__':
    p = Process(target=run_proc)
    p.start()
    while True:
        print("----1----")
        time.sleep(1)

Résultats d'exploitation :
Résumé des points de connaissances multi-processus Python
Instructions : Lors de la création d'un sous-processus, il vous suffit de transmettre une fonction d'exécution et les paramètres de la fonction pour créer un . Processus, utilisez la méthode start() pour démarrer

Process实例,用start()方法启动

3. 进程pid

# -*- coding:utf-8 -*-from multiprocessing import Processimport osimport timedef run_proc():
    """子进程要执行的代码"""
    print('子进程运行中,pid=%d...' % os.getpid())  # os.getpid获取当前进程的进程号
    print('子进程将要结束...')if __name__ == '__main__':
    print('父进程pid: %d' % os.getpid())  # os.getpid获取当前进程的进程号
    p = Process(target=run_proc)
    p.start()

运行结果:
Résumé des points de connaissances multi-processus Python

4. 给子进程指定的函数传递参数

# -*- coding:utf-8 -*-from multiprocessing import Processimport osfrom time import sleepdef run_proc(name, age, **kwargs):
    for i in range(10):
        print('子进程运行中,name= %s,age=%d ,pid=%d...' % (name, age, os.getpid()))
        print(kwargs)
        sleep(0.2)if __name__=='__main__':
    p = Process(target=run_proc, args=('test',18), kwargs={"m":20})
    p.start()
    sleep(1)  # 1秒中之后,立即结束子进程
    p.terminate()
    p.join()

运行结果:
Résumé des points de connaissances multi-processus Python

5. 进程间不同享全局变量

# -*- coding:utf-8 -*-from multiprocessing import Processimport osimport time

nums = [11, 22]def work1():
    """子进程要执行的代码"""
    print("in process1 pid=%d ,nums=%s" % (os.getpid(), nums))
    for i in range(3):
        nums.append(i)
        time.sleep(1)
        print("in process1 pid=%d ,nums=%s" % (os.getpid(), nums))def work2():
    """子进程要执行的代码"""
    print("in process2 pid=%d ,nums=%s" % (os.getpid(), nums))if __name__ == '__main__':
    p1 = Process(target=work1)
    p1.start()
    p1.join()

    p2 = Process(target=work2)
    p2.start()

运行结果:

in process1 pid=11349 ,nums=[11, 22]in process1 pid=11349 ,nums=[11, 22, 0]in process1 pid=11349 ,
nums=[11, 22, 0, 1]in process1 pid=11349 ,nums=[11, 22, 0, 1, 2]in process2 pid=11350 ,nums=[11, 22]

三、进程间同步-Queue

Process之间有时需要通信,操作系统提供了很多机制来实现进程间的通信。

1. Queue类语法说明

Nom/attribut de la méthode Description
#coding=utf-8from multiprocessing import Queue
q=Queue(3) #初始化一个Queue对象,最多可接收三条put消息q.put("消息1") q.put("消息2")print(q.full())  #Falseq.put("消息3")print(q.full()) #True#因为消息列队已满下面的try都会抛出异常,第一个try会等待2秒后再抛出异常,第二个Try会立刻抛出异常try:
    q.put("消息4",True,2)except:
    print("消息列队已满,现有消息数量:%s"%q.qsize())try:
    q.put_nowait("消息4")except:
    print("消息列队已满,现有消息数量:%s"%q.qsize())#推荐的方式,先判断消息列队是否已满,再写入if not q.full():
    q.put_nowait("消息4")#读取消息时,先判断消息列队是否为空,再读取if not q.empty():
    for i in range(q.qsize()):
        print(q.get_nowait())
Insérer la description de l'image ici4. Transmettez les paramètres à la fonction spécifiée par le processus enfant
FalseTrue消息列队已满,现有消息数量:3消息列队已满,现有消息数量:3消息1消息2消息3
方法名 说明
q=Queue() 初始化Queue()对象,若括号中没有指定最大可接收的消息数量,或数量为负值,那么就代表可接受的消息数量没有上限(直到内存的尽头)
Queue.qsize() 返回当前队列包含的消息数量
Queue.empty() 如果队列为空,返回True,反之False
Queue.full() 如果队列满了,返回True,反之False
Queue.get([block[, timeout]]) 获取队列中的一条消息,然后将其从列队中移除,block默认值为True。1、如果block使用默认值,且没有设置timeout(单位秒),消息列队如果为空,此时程序将被阻塞(停在读取状态),直到从消息列队读到消息为止,如果设置了timeout,则会等待timeout秒,若还没读取到任何消息,则抛出"Queue.Empty"异常。2、如果block值为False,消息列队如果为空,则会立刻抛出"Queue.Empty"异常
Queue.get_nowait() 相当Queue.get(False)
Queue.put(item,[block[, timeout]]) 将item消息写入队列,block默认值为True。1、如果block使用默认值,且没有设置timeout(单位秒),消息列队如果已经没有空间可写入,此时程序将被阻塞(停在写入状态),直到从消息列队腾出空间为止,如果设置了timeout,则会等待timeout秒,若还没空间,则抛出"Queue.Full"异常。 2、如果block值为False,消息列队如果没有空间可写入,则会立刻抛出"Queue.Full"异常
Queue.put_nowait(item)3 Processus pid Exécution des résultats :
En cours d'exécution résultats :🎜Insérer la description de l'image ici🎜5 . Les variables globales ne sont pas partagées entre les processus🎜
from multiprocessing import Process, Queueimport os, time, random# 写数据进程执行的代码:def write(q):
    for value in ['A', 'B', 'C']:
        print('Put %s to queue...' % value)
        q.put(value)
        time.sleep(random.random())# 读数据进程执行的代码:def read(q):
    while True:
        if not q.empty():
            value = q.get(True)
            print('Get %s from queue.' % value)
            time.sleep(random.random())
        else:
            breakif __name__=='__main__':
    # 父进程创建Queue,并传给各个子进程:
    q = Queue()
    pw = Process(target=write, args=(q,))
    pr = Process(target=read, args=(q,))
    # 启动子进程pw,写入:
    pw.start()    
    # 等待pw结束:
    pw.join()
    # 启动子进程pr,读取:
    pr.start()
    pr.join()
    # pr进程里是死循环,无法等待其结束,只能强行终止:
    print('')
    print('所有数据都写入并且读完')
🎜Résultats d'exécution :
import multiprocessingimport timedef add(num, value):
    print('add{0}:num={1}'.format(value, num))
    for i in range(0, 2):
        num += value        print('add{0}:num={1}'.format(value, num))
        time.sleep(1)if __name__ == '__main__':
    lock = multiprocessing.Lock()
    num = 0
    p1 = multiprocessing.Process(target=add, args=(num, 1))
    p2 = multiprocessing.Process(target=add, args=(num, 2))
    p1.start()
    p2.start()
🎜3. Synchronisation inter-processus - File d'attente🎜
🎜Les processus doivent parfois communiquer entre eux. communication.
🎜1. Description de la syntaxe de la classe Queue🎜🎜 thead>🎜q=Queue()🎜🎜Initialisez l'objet Queue() Si le nombre maximum de messages pouvant être reçus n'est pas spécifié entre parenthèses, ou le nombre. est une valeur négative, alors cela signifie qu'il n'y a pas de limite supérieure sur le nombre de messages pouvant être acceptés (jusqu'à la fin de la mémoire) 🎜🎜🎜Queue.qsize()🎜🎜Retours le nombre de messages contenus dans la file d'attente actuelle 🎜🎜🎜Queue .empty()🎜🎜Si la file d'attente est vide, renvoie True, sinon False🎜🎜🎜 Queue .full()🎜🎜Si la file d'attente est pleine, renvoie True, sinon False 🎜🎜🎜Queue.get([block[, timeout]])🎜🎜🎜Get un message dans la file d'attente, puis supprimez-le de la file d'attente. La valeur par défaut de block est True🎜. 1. Si le bloc utilise la valeur par défaut et qu'aucun délai d'attente (en secondes) n'est défini et que la file d'attente des messages est vide, le programme sera bloqué (arrêté en état de lecture) jusqu'à ce que le message soit lu dans la file d'attente des messages en cas d'expiration du délai. est défini, il attendra un délai d'attente de quelques secondes et si aucun message n'a été lu, une exception "Queue.Empty" sera levée. 2. Si la valeur du bloc est False et que la file d'attente des messages est vide, une exception "Queue.Empty" sera levée immédiatement🎜🎜🎜 Queue.get_nowait()🎜🎜 est équivalent à Queue .get( False)🎜🎜🎜 Queue.put(item,[block[, timeout]])🎜🎜🎜Écrivez le message de l'élément dans la file d'attente. La valeur par défaut du bloc est True. 🎜. 1. Si le bloc utilise la valeur par défaut et qu'aucun délai d'attente (en secondes) n'est défini, s'il n'y a pas d'espace pour l'écriture dans la file d'attente des messages, le programme sera bloqué (arrêté en écriture) jusqu'à ce que de l'espace soit libéré dans la file d'attente des messages. file d'attente des messages. Si le délai d'attente est défini, il attendra les secondes d'expiration. S'il n'y a pas d'espace, une exception "Queue.Full" sera levée. 2. Si la valeur du bloc est False, si la file d'attente des messages n'a pas d'espace pour écrire, elle lancera immédiatement une exception "Queue.Full"🎜🎜🎜 Queue.put_nowait(item)🎜 🎜Quite Queue.put(item, False)🎜🎜🎜🎜

2. Queue的使用

可以使用multiprocessing模块的Queue实现多进程之间的数据传递,Queue本身是一个消息列队程序,首先用一个小实例来演示一下Queue的工作原理:

#coding=utf-8from multiprocessing import Queue
q=Queue(3) #初始化一个Queue对象,最多可接收三条put消息q.put("消息1") q.put("消息2")print(q.full())  #Falseq.put("消息3")print(q.full()) #True#因为消息列队已满下面的try都会抛出异常,第一个try会等待2秒后再抛出异常,第二个Try会立刻抛出异常try:
    q.put("消息4",True,2)except:
    print("消息列队已满,现有消息数量:%s"%q.qsize())try:
    q.put_nowait("消息4")except:
    print("消息列队已满,现有消息数量:%s"%q.qsize())#推荐的方式,先判断消息列队是否已满,再写入if not q.full():
    q.put_nowait("消息4")#读取消息时,先判断消息列队是否为空,再读取if not q.empty():
    for i in range(q.qsize()):
        print(q.get_nowait())

运行结果:

FalseTrue消息列队已满,现有消息数量:3消息列队已满,现有消息数量:3消息1消息2消息3

3. Queue实例

我们以Queue为例,在父进程中创建两个子进程,一个往Queue里写数据,一个从Queue里读数据:

from multiprocessing import Process, Queueimport os, time, random# 写数据进程执行的代码:def write(q):
    for value in ['A', 'B', 'C']:
        print('Put %s to queue...' % value)
        q.put(value)
        time.sleep(random.random())# 读数据进程执行的代码:def read(q):
    while True:
        if not q.empty():
            value = q.get(True)
            print('Get %s from queue.' % value)
            time.sleep(random.random())
        else:
            breakif __name__=='__main__':
    # 父进程创建Queue,并传给各个子进程:
    q = Queue()
    pw = Process(target=write, args=(q,))
    pr = Process(target=read, args=(q,))
    # 启动子进程pw,写入:
    pw.start()    
    # 等待pw结束:
    pw.join()
    # 启动子进程pr,读取:
    pr.start()
    pr.join()
    # pr进程里是死循环,无法等待其结束,只能强行终止:
    print('')
    print('所有数据都写入并且读完')

运行结果:
Résumé des points de connaissances multi-processus Python

四、进程间同步-Lock

锁是为了确保数据一致性。比如读写锁,每个进程给一个变量增加 1,但是如果在一个进程读取但还没有写入的时候,另外的进程也同时读取了,并写入该值,则最后写入的值是错误的,这时候就需要加锁来保持数据一致性。

通过使用Lock来控制一段代码在同一时间只能被一个进程执行。Lock对象的两个方法,acquire()用来获取锁,release()用来释放锁。当一个进程调用acquire()时,如果锁的状态为unlocked,那么会立即修改为locked并返回,这时该进程即获得了锁。如果锁的状态为locked,那么调用acquire()的进程则阻塞。

1. Lock的语法说明

  • lock = multiprocessing.Lock(): 创建一个锁

  • lock.acquire() :获取锁

  • lock.release() :释放锁

  • with lock:自动获取、释放锁 类似于 with open() as f:

2. 程序不加锁时

import multiprocessingimport timedef add(num, value):
    print('add{0}:num={1}'.format(value, num))
    for i in range(0, 2):
        num += value        print('add{0}:num={1}'.format(value, num))
        time.sleep(1)if __name__ == '__main__':
    lock = multiprocessing.Lock()
    num = 0
    p1 = multiprocessing.Process(target=add, args=(num, 1))
    p2 = multiprocessing.Process(target=add, args=(num, 2))
    p1.start()
    p2.start()

运行结果:运得没有顺序,两个进程交替运行

add1:num=0add1:num=1add2:num=0add2:num=2add1:num=2add2:num=4

3. 程序加锁时

import multiprocessingimport timedef add(num, value, lock):
    try:
        lock.acquire()
        print('add{0}:num={1}'.format(value, num))
        for i in range(0, 2):
            num += value            print('add{0}:num={1}'.format(value, num))
            time.sleep(1)
    except Exception as err:
        raise err    finally:
        lock.release()if __name__ == '__main__':
    lock = multiprocessing.Lock()
    num = 0
    p1 = multiprocessing.Process(target=add, args=(num, 1, lock))
    p2 = multiprocessing.Process(target=add, args=(num, 2, lock))
    p1.start()
    p2.start()

运行结果:只有当其中一个进程执行完成后,其它的进程才会去执行,且谁先抢到锁谁先执行

add1:num=0add1:num=1add1:num=2add2:num=0add2:num=2add2:num=4

五、进程池Pool

当需要创建的子进程数量不多时,可以直接利用multiprocessing中的Process动态成生多个进程,但如果是上百甚至上千个目标,手动的去创建进程的工作量巨大,此时就可以用到multiprocessing模块提供的Pool方法。

1. Pool类语法说明

语法格式multiprocessing.pool.Pool([processes[, initializer[, initargs[, maxtasksperchild[, context]]]]])

参数说明

  • processes:工作进程数目,如果 processes 为 None,则使用 os.cpu_count() 返回的值。

  • initializer:如果 initializer 不为 None,则每个工作进程将会在启动时调用 initializer(*initargs)。

  • maxtasksperchild:一个工作进程在它退出或被一个新的工作进程代替之前能完成的任务数量,为了释放未使用的资源。

  • context:用于指定启动的工作进程的上下文。

两种方式向进程池提交任务

  • apply(func[, args[, kwds]]):阻塞方式。

  • apply_async(func[, args[, kwds]]):非阻塞方式。使用非阻塞方式调用func(并行执行,堵塞方式必须等待上一个进程退出才能执行下一个进程),args为传递给func的参数列表,kwds为传递给func的关键字参数列表

multiprocessing.Pool常用函数:

Nom de la méthode Description
方法名 说明
close() 关闭Pool,使其不再接受新的任务
terminate() 不管任务是否完成,立即终止
join() 主进程阻塞,等待子进程的退出, 必须在close或terminate之后使用

2. Pool实例

初始化Pool时,可以指定一个最大进程数,当有新的请求提交到Pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到指定的最大值,那么该请求就会等待,直到池中有进程结束,才会用之前的进程来执行新的任务,请看下面的实例:

# -*- coding:utf-8 -*-from multiprocessing import Poolimport os, time, randomdef worker(msg):
    t_start = time.time()
    print("%s开始执行,进程号为%d" % (msg,os.getpid()))
    # random.random()随机生成0~1之间的浮点数
    time.sleep(random.random()*2) 
    t_stop = time.time()
    print(msg,"执行完毕,耗时%0.2f" % (t_stop-t_start))po = Pool(3)  # 定义一个进程池,最大进程数3for i in range(0,10):
    # Pool().apply_async(要调用的目标,(传递给目标的参数元祖,))
    # 每次循环将会用空闲出来的子进程去调用目标
    po.apply_async(worker,(i,))print("----start----")po.close()  
    # 关闭进程池,关闭后po不再接收新的请求po.join()  
    # 等待po中所有子进程执行完成,必须放在close语句之后print("-----end-----")

运行结果:

----start----
0开始执行,进程号为21466
1开始执行,进程号为21468
2开始执行,进程号为21467
0 执行完毕,耗时1.01
3开始执行,进程号为21466
2 执行完毕,耗时1.24
4开始执行,进程号为21467
3 执行完毕,耗时0.56
5开始执行,进程号为21466
1 执行完毕,耗时1.68
6开始执行,进程号为21468
4 执行完毕,耗时0.67
7开始执行,进程号为21467
5 执行完毕,耗时0.83
8开始执行,进程号为21466
6 执行完毕,耗时0.75
9开始执行,进程号为21468
7 执行完毕,耗时1.03
8 执行完毕,耗时1.05
9 执行完毕,耗时1.69
-----end-----

3. 进程池中的Queue

如果要使用Pool创建进程,就需要使用multiprocessing.Manager()中的Queue()

而不是multiprocessing.Queue(),否则会得到一条如下的错误信息:RuntimeError: Queue objects should only be shared between processes through inheritance.

下面的实例演示了进程池中的进程如何通信:

# -*- coding:utf-8 -*-# 修改import中的Queue为Managerfrom multiprocessing import Manager,Poolimport os,time,randomdef reader(q):
    print("reader启动(%s),父进程为(%s)" % (os.getpid(), os.getppid()))
    for i in range(q.qsize()):
        print("reader从Queue获取到消息:%s" % q.get(True))def writer(q):
    print("writer启动(%s),父进程为(%s)" % (os.getpid(), os.getppid()))
    for i in "itcast":
        q.put(i)if __name__=="__main__":
    print("(%s) start" % os.getpid())
    q = Manager().Queue()  # 使用Manager中的Queue
    po = Pool()
    po.apply_async(writer, (q,))

    time.sleep(1)  # 先让上面的任务向Queue存入数据,然后再让下面的任务开始从中取数据

    po.apply_async(reader, (q,))
    po.close()
    po.join()
    print("(%s) End" % os.getpid())

运行结果:

(11095) start
writer启动(11097),父进程为(11095)reader启动(11098),父进程为(11095)reader从Queue获取到消息:i
reader从Queue获取到消息:t
reader从Queue获取到消息:c
reader从Queue获取到消息:a
reader从Queue获取到消息:s
reader从Queue获取到消息:t(11095) End

六、进程、线程对比

1. 功能

进程:能够完成多任务,比如 在一台电脑上能够同时运行多个QQ
线程:能够完成多任务,比如 一个QQ中的多个聊天窗口

定义的不同

  • 进程是系统进行资源分配和调度的一个独立单位.

  • 线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位.线程自己基本上不拥有系统资源,只拥有一点在运行中必不可少的资源(如程序计数器,一组寄存器和栈),但是它可与同属一个进程的其他的线程共享进程所拥有的全部资源.

2. 区别

  • 一个程序至少有一个进程,一个进程至少有一个线程.
    -线程的划分尺度小于进程(资源比进程少),使得多线程程序的并发性高。
    -进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率
    Résumé des points de connaissances multi-processus Python
  • 线线程不能够独立执行,必须依存在进程中
  • 可以将进程理解为工厂中的一条流水线,而其中的线程就是这个流水线上的工人

3. 优缺点

  • 线程:线程执行开销小,但不利于资源的管理和保护
  • 进程:进程执行开销大,但利于资源的管理和保护

推荐学习:python视频教程

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration:
Cet article est reproduit dans:. en cas de violation, veuillez contacter admin@php.cn Supprimer