Maison  >  Article  >  Java  >  Exemple d'analyse de la façon d'implémenter l'algorithme de sac à dos en Java

Exemple d'analyse de la façon d'implémenter l'algorithme de sac à dos en Java

黄舟
黄舟original
2017-08-23 10:46:541775parcourir

Cet article présente principalement une brève introduction à l'implémentation de l'algorithme de sac à dos (problème de sac à dos 0-1) en Java. L'éditeur pense qu'il est plutôt bon, je vais donc le partager avec vous maintenant et le donner comme référence. Suivons l'éditeur et jetons un coup d'œil

Problème 0-1 Knapsack

Le problème Knapsack est un problème NP-complet d'optimisation combinatoire. Le problème peut être décrit comme suit : étant donné un ensemble d'articles, chaque article a son propre poids et son propre prix, dans le cadre du poids total limité, comment choisissons-nous pour que le prix total des articles soit le plus élevé. Le nom du problème vient de la manière de choisir l’élément le plus approprié à placer dans un sac à dos donné.

C'est le problème le plus basique du sac à dos. Ses caractéristiques sont les suivantes : il n'y a qu'un seul article de chaque type, et vous pouvez choisir de le mettre ou non.

Utilisez des sous-problèmes pour définir l'état : c'est-à-dire que f[i][v] représente la valeur maximale qui peut être obtenue en mettant les i premiers éléments dans un sac à dos d'une capacité de v. Alors son équation de transition d'état est :

f[i][v]=max{ f[i-1][v], f[i-1][v-w[i]]+v[i ] }.


public class Bag {

  static class Item {// 定义一个物品
    String id; // 物品id
    int size = 0;// 物品所占空间
    int value = 0;// 物品价值

    static Item newItem(String id, int size, int value) {
      Item item = new Item();
      item.id = id;
      item.size = size;
      item.value = value;
      return item;
    }

    public String toString() {
      return this.id;
    }
  }

  static class OkBag { // 定义一个打包方式
    List<Item> Items = new ArrayList<Item>();// 包里的物品集合

    OkBag() {
    }

    int getValue() {// 包中物品的总价值
      int value = 0;
      for (Item item : Items) {
        value += item.value;
      }
      return value;
    };

    int getSize() {// 包中物品的总大小
      int size = 0;
      for (Item item : Items) {
        size += item.size;
      }
      return size;
    };

    public String toString() {
      return String.valueOf(this.getValue()) + " ";
    }
  }

  // 可放入包中的备选物品
  static Item[] sourceItems = { Item.newItem("4号球", 4, 5), Item.newItem("5号球", 5, 6), Item.newItem("6号球", 6, 7) };
  static int bagSize = 10; // 包的空间
  static int itemCount = sourceItems.length; // 物品的数量

  // 保存各种情况下的最优打包方式 第一维度为物品数量从0到itemCount,第二维度为包裹大小从0到bagSize
  static OkBag[][] okBags = new OkBag[itemCount + 1][bagSize + 1];

  static void init() {
    for (int i = 0; i < bagSize + 1; i++) {
      okBags[0][i] = new OkBag();
    }

    for (int i = 0; i < itemCount + 1; i++) {
      okBags[i][0] = new OkBag();
    }
  }

  static void doBag() {
    init();
    for (int iItem = 1; iItem <= itemCount; iItem++) {
      for (int curBagSize = 1; curBagSize <= bagSize; curBagSize++) {
        okBags[iItem][curBagSize] = new OkBag();
        if (sourceItems[iItem - 1].size > curBagSize) {// 当前物品大于包空间.肯定不能放入包中.
          okBags[iItem][curBagSize].Items.addAll(okBags[iItem - 1][curBagSize].Items);
        } else {
          int notIncludeValue = okBags[iItem - 1][curBagSize].getValue();// 不放当前物品包的价值
          int freeSize = curBagSize - sourceItems[iItem - 1].size;// 放当前物品包剩余空间
          int includeValue = sourceItems[iItem - 1].value + okBags[iItem - 1][freeSize].getValue();// 当前物品价值+放了当前物品后剩余包空间能放物品的价值
          if (notIncludeValue < includeValue) {// 放了价值更大就放入.
            okBags[iItem][curBagSize].Items.addAll(okBags[iItem - 1][freeSize].Items);
            okBags[iItem][curBagSize].Items.add(sourceItems[iItem - 1]);
          } else {// 否则不放入当前物品
            okBags[iItem][curBagSize].Items.addAll(okBags[iItem - 1][curBagSize].Items);
          }
        }

      }
    }
  }

  public static void main(String[] args) {
    Bag.doBag();
    for (int i = 0; i < Bag.itemCount + 1; i++) {// 打印所有方案中包含的物品
      for (int j = 0; j < Bag.bagSize + 1; j++) {
        System.out.print(Bag.okBags[i][j].Items);
      }
      System.out.println("");
    }

    for (int i = 0; i < Bag.itemCount + 1; i++) {// 打印所有方案中包的总价值
      for (int j = 0; j < Bag.bagSize + 1; j++) {
        System.out.print(Bag.okBags[i][j]);
      }
      System.out.println("");
    }

    OkBag okBagResult = Bag.okBags[Bag.itemCount][Bag.bagSize];
    System.out.println("最终结果为:" + okBagResult.Items.toString() + okBagResult);

  }

}

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration:
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn