recherche
Maisondéveloppement back-endTutoriel PythonGuide complet de journalisation Python : meilleures pratiques et mise en œuvre

Complete Python Logging Guide: Best Practices & Implementation

Pourquoi une journalisation appropriée est importante

Avant de plonger dans les détails techniques, comprenons pourquoi une journalisation appropriée est importante :

  • Permet un débogage efficace en production
  • Fournit des informations sur le comportement des applications
  • Facilite le suivi des performances
  • Aide à suivre les incidents de sécurité
  • Prend en charge les exigences de conformité
  • Améliore l'efficacité de la maintenance

Démarrage rapide avec la journalisation Python

Pour ceux qui découvrent la journalisation Python, voici un exemple de base utilisant logging.basicConfig :

# Simple python logging example
import logging

# Basic logger in python example
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)

# Create a logger
logger = logging.getLogger(__name__)

# Logger in python example
logger.info("This is an information message")
logger.warning("This is a warning message")

Cet exemple montre les bases du module de journalisation en Python et montre comment utiliser la journalisation Python Logger dans votre application.

Premiers pas avec le module de journalisation de Python

Configuration de base

Commençons par une configuration de journalisation simple :

import logging

# Basic configuration
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)

# Your first logger
logger = logging.getLogger(__name__)

# Using the logger
logger.info("Application started")
logger.warning("Watch out!")
logger.error("Something went wrong")

Comprendre les niveaux de journalisation

La journalisation Python est livrée avec cinq niveaux standards :

Level Numeric Value When to Use
DEBUG 10 Detailed information for diagnosing problems
INFO 20 General operational events
WARNING 30 Something unexpected happened
ERROR 40 More serious problem
CRITICAL 50 Program may not be able to continue

Au-delà des instructions print()

Pourquoi choisir la journalisation plutôt que les relevés imprimés ?

  • Niveaux de gravité pour une meilleure catégorisation
  • Informations d'horodatage
  • Informations sur la source (fichier, numéro de ligne)
  • Destinations de sortie configurables
  • Filtrage prêt pour la production
  • Sécurité du fil

Configuration de votre système de journalisation

Options de configuration de base

# Simple python logging example
import logging

# Basic logger in python example
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)

# Create a logger
logger = logging.getLogger(__name__)

# Logger in python example
logger.info("This is an information message")
logger.warning("This is a warning message")

Configuration avancée

Pour les applications plus complexes :

import logging

# Basic configuration
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)

# Your first logger
logger = logging.getLogger(__name__)

# Using the logger
logger.info("Application started")
logger.warning("Watch out!")
logger.error("Something went wrong")

Travailler avec la journalisation avancée

Journalisation structurée

La journalisation structurée fournit un format cohérent et lisible par machine, essentiel pour l'analyse et la surveillance des journaux. Pour un aperçu complet des modèles de journalisation structurée et des meilleures pratiques, consultez le guide de journalisation structurée. Implémentons la journalisation structurée en Python :

logging.basicConfig(
    filename='app.log',
    filemode='w',
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    level=logging.DEBUG,
    datefmt='%Y-%m-%d %H:%M:%S'
)

Gestion des erreurs

Une journalisation appropriée des erreurs est cruciale pour le débogage des problèmes de production. Voici une approche globale :

config = {
    'version': 1,
    'formatters': {
        'detailed': {
            'format': '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
        }
    },
    'handlers': {
        'console': {
            'class': 'logging.StreamHandler',
            'level': 'INFO',
            'formatter': 'detailed'
        },
        'file': {
            'class': 'logging.FileHandler',
            'filename': 'app.log',
            'level': 'DEBUG',
            'formatter': 'detailed'
        }
    },
    'loggers': {
        'myapp': {
            'handlers': ['console', 'file'],
            'level': 'DEBUG',
            'propagate': True
        }
    }
}

logging.config.dictConfig(config)

Journalisation simultanée

Lorsque vous vous connectez à des applications multithread, vous devez garantir la sécurité des threads :

import json
import logging
from datetime import datetime

class JSONFormatter(logging.Formatter):
    def __init__(self):
        super().__init__()

    def format(self, record):
        # Create base log record
        log_obj = {
            "timestamp": self.formatTime(record, self.datefmt),
            "name": record.name,
            "level": record.levelname,
            "message": record.getMessage(),
            "module": record.module,
            "function": record.funcName,
            "line": record.lineno
        }

        # Add exception info if present
        if record.exc_info:
            log_obj["exception"] = self.formatException(record.exc_info)

        # Add custom fields from extra
        if hasattr(record, "extra_fields"):
            log_obj.update(record.extra_fields)

        return json.dumps(log_obj)

# Usage Example
logger = logging.getLogger(__name__)
handler = logging.StreamHandler()
handler.setFormatter(JSONFormatter())
logger.addHandler(handler)

# Log with extra fields
logger.info("User logged in", extra={"extra_fields": {"user_id": "123", "ip": "192.168.1.1"}})

Connexion dans différents environnements

Différents environnements d'application nécessitent des approches de journalisation spécifiques. Que vous travailliez avec des applications Web, des microservices ou des tâches en arrière-plan, chaque environnement a des exigences de journalisation et des bonnes pratiques uniques. Explorons comment mettre en œuvre une journalisation efficace dans différents scénarios de déploiement.

Journalisation des applications Web

Configuration de la journalisation Django

Voici une configuration complète de la journalisation Django :

import traceback
import sys
from contextlib import contextmanager

class ErrorLogger:
    def __init__(self, logger):
        self.logger = logger

    @contextmanager
    def error_context(self, operation_name, **context):
        """Context manager for error logging with additional context"""
        try:
            yield
        except Exception as e:
            # Capture the current stack trace
            exc_type, exc_value, exc_traceback = sys.exc_info()

            # Format error details
            error_details = {
                "operation": operation_name,
                "error_type": exc_type.__name__,
                "error_message": str(exc_value),
                "context": context,
                "stack_trace": traceback.format_exception(exc_type, exc_value, exc_traceback)
            }

            # Log the error with full context
            self.logger.error(
                f"Error in {operation_name}: {str(exc_value)}",
                extra={"error_details": error_details}
            )

            # Re-raise the exception
            raise

# Usage Example
logger = logging.getLogger(__name__)
error_logger = ErrorLogger(logger)

with error_logger.error_context("user_authentication", user_id="123", attempt=2):
    # Your code that might raise an exception
    authenticate_user(user_id)

Configuration de la journalisation du flacon

Flask fournit son propre système de journalisation qui peut être personnalisé :

import threading
import logging
from queue import Queue
from logging.handlers import QueueHandler, QueueListener

def setup_thread_safe_logging():
    """Set up thread-safe logging with a queue"""
    # Create the queue
    log_queue = Queue()

    # Create handlers
    console_handler = logging.StreamHandler()
    file_handler = logging.FileHandler('app.log')

    # Create queue handler and listener
    queue_handler = QueueHandler(log_queue)
    listener = QueueListener(
        log_queue,
        console_handler,
        file_handler,
        respect_handler_level=True
    )

    # Configure root logger
    root_logger = logging.getLogger()
    root_logger.addHandler(queue_handler)

    # Start the listener in a separate thread
    listener.start()

    return listener

# Usage
listener = setup_thread_safe_logging()

def worker_function():
    logger = logging.getLogger(__name__)
    logger.info(f"Worker thread {threading.current_thread().name} starting")
    # Do work...
    logger.info(f"Worker thread {threading.current_thread().name} finished")

# Create and start threads
threads = [
    threading.Thread(target=worker_function)
    for _ in range(3)
]
for thread in threads:
    thread.start()

Pratiques de journalisation FastAPI

FastAPI peut exploiter la journalisation de Python avec certaines améliorations du middleware :

# settings.py
LOGGING = {
    'version': 1,
    'disable_existing_loggers': False,
    'formatters': {
        'verbose': {
            'format': '{levelname} {asctime} {module} {process:d} {thread:d} {message}',
            'style': '{',
        },
        'simple': {
            'format': '{levelname} {message}',
            'style': '{',
        },
    },
    'filters': {
        'require_debug_true': {
            '()': 'django.utils.log.RequireDebugTrue',
        },
    },
    'handlers': {
        'console': {
            'level': 'INFO',
            'filters': ['require_debug_true'],
            'class': 'logging.StreamHandler',
            'formatter': 'simple'
        },
        'file': {
            'level': 'ERROR',
            'class': 'logging.FileHandler',
            'filename': 'django-errors.log',
            'formatter': 'verbose'
        },
        'mail_admins': {
            'level': 'ERROR',
            'class': 'django.utils.log.AdminEmailHandler',
            'include_html': True,
        }
    },
    'loggers': {
        'django': {
            'handlers': ['console'],
            'propagate': True,
        },
        'django.request': {
            'handlers': ['file', 'mail_admins'],
            'level': 'ERROR',
            'propagate': False,
        },
        'myapp': {
            'handlers': ['console', 'file'],
            'level': 'INFO',
        }
    }
}

Journalisation des microservices

Pour les microservices, le traçage distribué et les identifiants de corrélation sont essentiels :

import logging
from logging.handlers import RotatingFileHandler
from flask import Flask, request

app = Flask(__name__)

def setup_logger():
    # Create formatter
    formatter = logging.Formatter(
        '[%(asctime)s] %(levelname)s in %(module)s: %(message)s'
    )

    # File Handler
    file_handler = RotatingFileHandler(
        'flask_app.log',
        maxBytes=10485760,  # 10MB
        backupCount=10
    )
    file_handler.setLevel(logging.INFO)
    file_handler.setFormatter(formatter)

    # Add request context
    class RequestFormatter(logging.Formatter):
        def format(self, record):
            record.url = request.url
            record.remote_addr = request.remote_addr
            return super().format(record)

    # Configure app logger
    app.logger.addHandler(file_handler)
    app.logger.setLevel(logging.INFO)

    return app.logger

# Usage in routes
@app.route('/api/endpoint')
def api_endpoint():
    app.logger.info(f'Request received from {request.remote_addr}')
    # Your code here
    return jsonify({'status': 'success'})

Journalisation des tâches en arrière-plan

Pour les tâches en arrière-plan, nous devons assurer une gestion et une rotation appropriées des journaux :

from fastapi import FastAPI, Request
from typing import Callable
import logging
import time

app = FastAPI()

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

# Middleware for request logging
@app.middleware("http")
async def log_requests(request: Request, call_next: Callable):
    start_time = time.time()
    response = await call_next(request)
    duration = time.time() - start_time

    log_dict = {
        "url": str(request.url),
        "method": request.method,
        "client_ip": request.client.host,
        "duration": f"{duration:.2f}s",
        "status_code": response.status_code
    }

    logger.info(f"Request processed: {log_dict}")
    return response

# Example endpoint with logging
@app.get("/items/{item_id}")
async def read_item(item_id: int):
    logger.info(f"Retrieving item {item_id}")
    # Your code here
    return {"item_id": item_id}

Modèles et solutions de journalisation courants

Demande de suivi d'identité

Mise en œuvre du suivi des demandes dans votre application :

import logging
import contextvars
from uuid import uuid4

# Create context variable for trace ID
trace_id_var = contextvars.ContextVar('trace_id', default=None)

class TraceIDFilter(logging.Filter):
    def filter(self, record):
        trace_id = trace_id_var.get()
        record.trace_id = trace_id if trace_id else 'no_trace'
        return True

def setup_microservice_logging(service_name):
    logger = logging.getLogger(service_name)

    # Create formatter with trace ID
    formatter = logging.Formatter(
        '%(asctime)s - %(name)s - [%(trace_id)s] - %(levelname)s - %(message)s'
    )

    # Add handlers with trace ID filter
    handler = logging.StreamHandler()
    handler.setFormatter(formatter)
    handler.addFilter(TraceIDFilter())

    logger.addHandler(handler)
    logger.setLevel(logging.INFO)

    return logger

# Usage in microservice
logger = setup_microservice_logging('order_service')

def process_order(order_data):
    # Generate or get trace ID from request
    trace_id_var.set(str(uuid4()))

    logger.info("Starting order processing", extra={
        'order_id': order_data['id'],
        'customer_id': order_data['customer_id']
    })

    # Process order...

    logger.info("Order processed successfully")

Journalisation de l'activité des utilisateurs

Suivez les actions des utilisateurs en toute sécurité :

# Simple python logging example
import logging

# Basic logger in python example
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)

# Create a logger
logger = logging.getLogger(__name__)

# Logger in python example
logger.info("This is an information message")
logger.warning("This is a warning message")

Dépannage et débogage

Un dépannage efficace des problèmes de journalisation nécessite une compréhension des problèmes courants et de leurs solutions. Cette section couvre les défis les plus fréquents auxquels les développeurs sont confrontés lors de la mise en œuvre de la journalisation et fournit des solutions pratiques pour déboguer les configurations de journalisation.

Problèmes de journalisation courants

Entrées de journal manquantes

import logging

# Basic configuration
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)

# Your first logger
logger = logging.getLogger(__name__)

# Using the logger
logger.info("Application started")
logger.warning("Watch out!")
logger.error("Something went wrong")

Goulots d’étranglement en matière de performances

logging.basicConfig(
    filename='app.log',
    filemode='w',
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    level=logging.DEBUG,
    datefmt='%Y-%m-%d %H:%M:%S'
)

Pièges courants et solutions en matière de journalisation

Problèmes de configuration

config = {
    'version': 1,
    'formatters': {
        'detailed': {
            'format': '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
        }
    },
    'handlers': {
        'console': {
            'class': 'logging.StreamHandler',
            'level': 'INFO',
            'formatter': 'detailed'
        },
        'file': {
            'class': 'logging.FileHandler',
            'filename': 'app.log',
            'level': 'DEBUG',
            'formatter': 'detailed'
        }
    },
    'loggers': {
        'myapp': {
            'handlers': ['console', 'file'],
            'level': 'DEBUG',
            'propagate': True
        }
    }
}

logging.config.dictConfig(config)

Problèmes de mémoire et de ressources

import json
import logging
from datetime import datetime

class JSONFormatter(logging.Formatter):
    def __init__(self):
        super().__init__()

    def format(self, record):
        # Create base log record
        log_obj = {
            "timestamp": self.formatTime(record, self.datefmt),
            "name": record.name,
            "level": record.levelname,
            "message": record.getMessage(),
            "module": record.module,
            "function": record.funcName,
            "line": record.lineno
        }

        # Add exception info if present
        if record.exc_info:
            log_obj["exception"] = self.formatException(record.exc_info)

        # Add custom fields from extra
        if hasattr(record, "extra_fields"):
            log_obj.update(record.extra_fields)

        return json.dumps(log_obj)

# Usage Example
logger = logging.getLogger(__name__)
handler = logging.StreamHandler()
handler.setFormatter(JSONFormatter())
logger.addHandler(handler)

# Log with extra fields
logger.info("User logged in", extra={"extra_fields": {"user_id": "123", "ip": "192.168.1.1"}})

Problèmes de chaîne de format et de performances

import traceback
import sys
from contextlib import contextmanager

class ErrorLogger:
    def __init__(self, logger):
        self.logger = logger

    @contextmanager
    def error_context(self, operation_name, **context):
        """Context manager for error logging with additional context"""
        try:
            yield
        except Exception as e:
            # Capture the current stack trace
            exc_type, exc_value, exc_traceback = sys.exc_info()

            # Format error details
            error_details = {
                "operation": operation_name,
                "error_type": exc_type.__name__,
                "error_message": str(exc_value),
                "context": context,
                "stack_trace": traceback.format_exception(exc_type, exc_value, exc_traceback)
            }

            # Log the error with full context
            self.logger.error(
                f"Error in {operation_name}: {str(exc_value)}",
                extra={"error_details": error_details}
            )

            # Re-raise the exception
            raise

# Usage Example
logger = logging.getLogger(__name__)
error_logger = ErrorLogger(logger)

with error_logger.error_context("user_authentication", user_id="123", attempt=2):
    # Your code that might raise an exception
    authenticate_user(user_id)

Pièges de configuration du gestionnaire

import threading
import logging
from queue import Queue
from logging.handlers import QueueHandler, QueueListener

def setup_thread_safe_logging():
    """Set up thread-safe logging with a queue"""
    # Create the queue
    log_queue = Queue()

    # Create handlers
    console_handler = logging.StreamHandler()
    file_handler = logging.FileHandler('app.log')

    # Create queue handler and listener
    queue_handler = QueueHandler(log_queue)
    listener = QueueListener(
        log_queue,
        console_handler,
        file_handler,
        respect_handler_level=True
    )

    # Configure root logger
    root_logger = logging.getLogger()
    root_logger.addHandler(queue_handler)

    # Start the listener in a separate thread
    listener.start()

    return listener

# Usage
listener = setup_thread_safe_logging()

def worker_function():
    logger = logging.getLogger(__name__)
    logger.info(f"Worker thread {threading.current_thread().name} starting")
    # Do work...
    logger.info(f"Worker thread {threading.current_thread().name} finished")

# Create and start threads
threads = [
    threading.Thread(target=worker_function)
    for _ in range(3)
]
for thread in threads:
    thread.start()

Considérations sur la sécurité des fils

# settings.py
LOGGING = {
    'version': 1,
    'disable_existing_loggers': False,
    'formatters': {
        'verbose': {
            'format': '{levelname} {asctime} {module} {process:d} {thread:d} {message}',
            'style': '{',
        },
        'simple': {
            'format': '{levelname} {message}',
            'style': '{',
        },
    },
    'filters': {
        'require_debug_true': {
            '()': 'django.utils.log.RequireDebugTrue',
        },
    },
    'handlers': {
        'console': {
            'level': 'INFO',
            'filters': ['require_debug_true'],
            'class': 'logging.StreamHandler',
            'formatter': 'simple'
        },
        'file': {
            'level': 'ERROR',
            'class': 'logging.FileHandler',
            'filename': 'django-errors.log',
            'formatter': 'verbose'
        },
        'mail_admins': {
            'level': 'ERROR',
            'class': 'django.utils.log.AdminEmailHandler',
            'include_html': True,
        }
    },
    'loggers': {
        'django': {
            'handlers': ['console'],
            'propagate': True,
        },
        'django.request': {
            'handlers': ['file', 'mail_admins'],
            'level': 'ERROR',
            'propagate': False,
        },
        'myapp': {
            'handlers': ['console', 'file'],
            'level': 'INFO',
        }
    }
}

Problèmes de fichiers de configuration

import logging
from logging.handlers import RotatingFileHandler
from flask import Flask, request

app = Flask(__name__)

def setup_logger():
    # Create formatter
    formatter = logging.Formatter(
        '[%(asctime)s] %(levelname)s in %(module)s: %(message)s'
    )

    # File Handler
    file_handler = RotatingFileHandler(
        'flask_app.log',
        maxBytes=10485760,  # 10MB
        backupCount=10
    )
    file_handler.setLevel(logging.INFO)
    file_handler.setFormatter(formatter)

    # Add request context
    class RequestFormatter(logging.Formatter):
        def format(self, record):
            record.url = request.url
            record.remote_addr = request.remote_addr
            return super().format(record)

    # Configure app logger
    app.logger.addHandler(file_handler)
    app.logger.setLevel(logging.INFO)

    return app.logger

# Usage in routes
@app.route('/api/endpoint')
def api_endpoint():
    app.logger.info(f'Request received from {request.remote_addr}')
    # Your code here
    return jsonify({'status': 'success'})

Tester votre journalisation

Tests unitaires avec journaux

from fastapi import FastAPI, Request
from typing import Callable
import logging
import time

app = FastAPI()

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

# Middleware for request logging
@app.middleware("http")
async def log_requests(request: Request, call_next: Callable):
    start_time = time.time()
    response = await call_next(request)
    duration = time.time() - start_time

    log_dict = {
        "url": str(request.url),
        "method": request.method,
        "client_ip": request.client.host,
        "duration": f"{duration:.2f}s",
        "status_code": response.status_code
    }

    logger.info(f"Request processed: {log_dict}")
    return response

# Example endpoint with logging
@app.get("/items/{item_id}")
async def read_item(item_id: int):
    logger.info(f"Retrieving item {item_id}")
    # Your code here
    return {"item_id": item_id}

Tests avec des enregistreurs simulés

import logging
import contextvars
from uuid import uuid4

# Create context variable for trace ID
trace_id_var = contextvars.ContextVar('trace_id', default=None)

class TraceIDFilter(logging.Filter):
    def filter(self, record):
        trace_id = trace_id_var.get()
        record.trace_id = trace_id if trace_id else 'no_trace'
        return True

def setup_microservice_logging(service_name):
    logger = logging.getLogger(service_name)

    # Create formatter with trace ID
    formatter = logging.Formatter(
        '%(asctime)s - %(name)s - [%(trace_id)s] - %(levelname)s - %(message)s'
    )

    # Add handlers with trace ID filter
    handler = logging.StreamHandler()
    handler.setFormatter(formatter)
    handler.addFilter(TraceIDFilter())

    logger.addHandler(handler)
    logger.setLevel(logging.INFO)

    return logger

# Usage in microservice
logger = setup_microservice_logging('order_service')

def process_order(order_data):
    # Generate or get trace ID from request
    trace_id_var.set(str(uuid4()))

    logger.info("Starting order processing", extra={
        'order_id': order_data['id'],
        'customer_id': order_data['customer_id']
    })

    # Process order...

    logger.info("Order processed successfully")

Solutions d'exploitation forestière alternatives

Loguru

Loguru fournit une interface de journalisation plus simple avec des fonctionnalités puissantes prêtes à l'emploi :

from logging.handlers import RotatingFileHandler
import logging
import threading
from datetime import datetime

class BackgroundTaskLogger:
    def __init__(self, task_name):
        self.logger = logging.getLogger(f'background_task.{task_name}')
        self.setup_logging()

    def setup_logging(self):
        # Create logs directory if it doesn't exist
        import os
        os.makedirs('logs', exist_ok=True)

        # Setup rotating file handler
        handler = RotatingFileHandler(
            filename=f'logs/task_{datetime.now():%Y%m%d}.log',
            maxBytes=5*1024*1024,  # 5MB
            backupCount=5
        )

        # Create formatter
        formatter = logging.Formatter(
            '%(asctime)s - [%(threadName)s] - %(levelname)s - %(message)s'
        )
        handler.setFormatter(formatter)

        self.logger.addHandler(handler)
        self.logger.setLevel(logging.INFO)

    def log_task_status(self, status, **kwargs):
        """Log task status with additional context"""
        extra = {
            'thread_id': threading.get_ident(),
            'timestamp': datetime.now().isoformat(),
            **kwargs
        }
        self.logger.info(f"Task status: {status}", extra=extra)

# Usage example
def background_job():
    logger = BackgroundTaskLogger('data_processing')
    try:
        logger.log_task_status('started', job_id=123)
        # Do some work...
        logger.log_task_status('completed', records_processed=1000)
    except Exception as e:
        logger.logger.error(f"Task failed: {str(e)}", exc_info=True)

Journal de structure

Structlog est excellent pour la journalisation structurée avec contexte :

import logging
from contextlib import contextmanager
import threading
import uuid

# Store request ID in thread-local storage
_request_id = threading.local()

class RequestIDFilter(logging.Filter):
    def filter(self, record):
        record.request_id = getattr(_request_id, 'id', 'no_request_id')
        return True

@contextmanager
def request_context(request_id=None):
    """Context manager for request tracking"""
    if request_id is None:
        request_id = str(uuid.uuid4())

    old_id = getattr(_request_id, 'id', None)
    _request_id.id = request_id
    try:
        yield request_id
    finally:
        if old_id is None:
            del _request_id.id
        else:
            _request_id.id = old_id

# Setup logging with request ID
def setup_request_logging():
    logger = logging.getLogger()
    formatter = logging.Formatter(
        '%(asctime)s - [%(request_id)s] - %(levelname)s - %(message)s'
    )

    handler = logging.StreamHandler()
    handler.setFormatter(formatter)
    handler.addFilter(RequestIDFilter())

    logger.addHandler(handler)
    return logger

# Usage example
logger = setup_request_logging()

def process_request(data):
    with request_context() as request_id:
        logger.info("Processing request", extra={
            'data': data,
            'operation': 'process_request'
        })
        # Process the request...
        logger.info("Request processed successfully")

Python-JSON-Logger

Pour la journalisation au format JSON :

# Simple python logging example
import logging

# Basic logger in python example
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)

# Create a logger
logger = logging.getLogger(__name__)

# Logger in python example
logger.info("This is an information message")
logger.warning("This is a warning message")

Meilleures pratiques et lignes directrices

Normes d'exploitation forestière

import logging

# Basic configuration
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)

# Your first logger
logger = logging.getLogger(__name__)

# Using the logger
logger.info("Application started")
logger.warning("Watch out!")
logger.error("Something went wrong")

Optimisation des performances

logging.basicConfig(
    filename='app.log',
    filemode='w',
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    level=logging.DEBUG,
    datefmt='%Y-%m-%d %H:%M:%S'
)

Études de cas

Mise en œuvre dans le monde réel : plateforme de commerce électronique

config = {
    'version': 1,
    'formatters': {
        'detailed': {
            'format': '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
        }
    },
    'handlers': {
        'console': {
            'class': 'logging.StreamHandler',
            'level': 'INFO',
            'formatter': 'detailed'
        },
        'file': {
            'class': 'logging.FileHandler',
            'filename': 'app.log',
            'level': 'DEBUG',
            'formatter': 'detailed'
        }
    },
    'loggers': {
        'myapp': {
            'handlers': ['console', 'file'],
            'level': 'DEBUG',
            'propagate': True
        }
    }
}

logging.config.dictConfig(config)

Exemple d'architecture de microservices

import json
import logging
from datetime import datetime

class JSONFormatter(logging.Formatter):
    def __init__(self):
        super().__init__()

    def format(self, record):
        # Create base log record
        log_obj = {
            "timestamp": self.formatTime(record, self.datefmt),
            "name": record.name,
            "level": record.levelname,
            "message": record.getMessage(),
            "module": record.module,
            "function": record.funcName,
            "line": record.lineno
        }

        # Add exception info if present
        if record.exc_info:
            log_obj["exception"] = self.formatException(record.exc_info)

        # Add custom fields from extra
        if hasattr(record, "extra_fields"):
            log_obj.update(record.extra_fields)

        return json.dumps(log_obj)

# Usage Example
logger = logging.getLogger(__name__)
handler = logging.StreamHandler()
handler.setFormatter(JSONFormatter())
logger.addHandler(handler)

# Log with extra fields
logger.info("User logged in", extra={"extra_fields": {"user_id": "123", "ip": "192.168.1.1"}})

Conclusion

Points clés à retenir

  1. Foundation First : commencez par une configuration de base appropriée
  • Définissez les niveaux de journalisation appropriés
  • Configurer des formats significatifs
  • Choisissez les gestionnaires appropriés
  1. Approche structurée : utilisez la journalisation structurée pour une meilleure analyse
  • Formats de journaux cohérents
  • Informations contextuelles
  • Sortie analysable par machine
  1. La performance compte : optimiser la journalisation pour la production
  • Mettre en œuvre la rotation des journaux
  • Utilisez la journalisation asynchrone si nécessaire
  • Envisagez des stratégies d'échantillonnage
  1. Sensibilisation à la sécurité : Protégez les informations sensibles
    • Filtrer les données sensibles
    • Mettre en œuvre des contrôles d'accès appropriés
    • Suivez les exigences de conformité

Liste de contrôle de mise en œuvre

import traceback
import sys
from contextlib import contextmanager

class ErrorLogger:
    def __init__(self, logger):
        self.logger = logger

    @contextmanager
    def error_context(self, operation_name, **context):
        """Context manager for error logging with additional context"""
        try:
            yield
        except Exception as e:
            # Capture the current stack trace
            exc_type, exc_value, exc_traceback = sys.exc_info()

            # Format error details
            error_details = {
                "operation": operation_name,
                "error_type": exc_type.__name__,
                "error_message": str(exc_value),
                "context": context,
                "stack_trace": traceback.format_exception(exc_type, exc_value, exc_traceback)
            }

            # Log the error with full context
            self.logger.error(
                f"Error in {operation_name}: {str(exc_value)}",
                extra={"error_details": error_details}
            )

            # Re-raise the exception
            raise

# Usage Example
logger = logging.getLogger(__name__)
error_logger = ErrorLogger(logger)

with error_logger.error_context("user_authentication", user_id="123", attempt=2):
    # Your code that might raise an exception
    authenticate_user(user_id)

Ressources supplémentaires

  1. Documentation officielle :
  • HOWTO de journalisation Python
  • Livre de recettes de journalisation
  1. Outils et bibliothèques :
  • Documentation Loguru
  • Documentation Structlog
  • Python-JSON-Logger

Ce guide couvre les aspects essentiels de la journalisation Python, de la configuration de base aux implémentations avancées. N'oubliez pas que la journalisation fait partie intégrante de l'observabilité et de la maintenance des applications. Mettez-le en œuvre de manière réfléchie et entretenez-le régulièrement pour obtenir les meilleurs résultats.

N'oubliez pas de revoir et de mettre à jour périodiquement votre implémentation de journalisation à mesure que votre application évolue et que de nouvelles exigences apparaissent.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Le plan Python de 2 heures: une approche réalisteLe plan Python de 2 heures: une approche réalisteApr 11, 2025 am 12:04 AM

Vous pouvez apprendre les concepts de programmation de base et les compétences de Python dans les 2 heures. 1. Apprenez les variables et les types de données, 2. Flux de contrôle maître (instructions et boucles conditionnelles), 3. Comprenez la définition et l'utilisation des fonctions, 4. Démarrez rapidement avec la programmation Python via des exemples simples et des extraits de code.

Python: Explorer ses applications principalesPython: Explorer ses applications principalesApr 10, 2025 am 09:41 AM

Python est largement utilisé dans les domaines du développement Web, de la science des données, de l'apprentissage automatique, de l'automatisation et des scripts. 1) Dans le développement Web, les cadres Django et Flask simplifient le processus de développement. 2) Dans les domaines de la science des données et de l'apprentissage automatique, les bibliothèques Numpy, Pandas, Scikit-Learn et Tensorflow fournissent un fort soutien. 3) En termes d'automatisation et de script, Python convient aux tâches telles que les tests automatisés et la gestion du système.

Combien de python pouvez-vous apprendre en 2 heures?Combien de python pouvez-vous apprendre en 2 heures?Apr 09, 2025 pm 04:33 PM

Vous pouvez apprendre les bases de Python dans les deux heures. 1. Apprenez les variables et les types de données, 2. Structures de contrôle maître telles que si les instructions et les boucles, 3. Comprenez la définition et l'utilisation des fonctions. Ceux-ci vous aideront à commencer à écrire des programmes Python simples.

Comment enseigner les bases de la programmation novice en informatique dans le projet et les méthodes axées sur les problèmes dans les 10 heures?Comment enseigner les bases de la programmation novice en informatique dans le projet et les méthodes axées sur les problèmes dans les 10 heures?Apr 02, 2025 am 07:18 AM

Comment enseigner les bases de la programmation novice en informatique dans les 10 heures? Si vous n'avez que 10 heures pour enseigner à l'informatique novice des connaissances en programmation, que choisissez-vous d'enseigner ...

Comment éviter d'être détecté par le navigateur lors de l'utilisation de Fiddler partout pour la lecture de l'homme au milieu?Comment éviter d'être détecté par le navigateur lors de l'utilisation de Fiddler partout pour la lecture de l'homme au milieu?Apr 02, 2025 am 07:15 AM

Comment éviter d'être détecté lors de l'utilisation de FiddlereVerywhere pour les lectures d'homme dans le milieu lorsque vous utilisez FiddlereVerywhere ...

Que dois-je faire si le module '__builtin__' n'est pas trouvé lors du chargement du fichier de cornichon dans Python 3.6?Que dois-je faire si le module '__builtin__' n'est pas trouvé lors du chargement du fichier de cornichon dans Python 3.6?Apr 02, 2025 am 07:12 AM

Chargement des fichiers de cornichons dans Python 3.6 Rapport de l'environnement Erreur: modulenotFoundError: NomoduLenamed ...

Comment améliorer la précision de la segmentation des mots jieba dans l'analyse des commentaires pittoresques?Comment améliorer la précision de la segmentation des mots jieba dans l'analyse des commentaires pittoresques?Apr 02, 2025 am 07:09 AM

Comment résoudre le problème de la segmentation des mots jieba dans l'analyse des commentaires pittoresques? Lorsque nous effectuons des commentaires et des analyses pittoresques, nous utilisons souvent l'outil de segmentation des mots jieba pour traiter le texte ...

Comment utiliser l'expression régulière pour correspondre à la première étiquette fermée et à s'arrêter?Comment utiliser l'expression régulière pour correspondre à la première étiquette fermée et à s'arrêter?Apr 02, 2025 am 07:06 AM

Comment utiliser l'expression régulière pour correspondre à la première étiquette fermée et à s'arrêter? Lorsque vous traitez avec HTML ou d'autres langues de balisage, des expressions régulières sont souvent nécessaires pour ...

See all articles

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
3 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
3 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
3 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Comment déverrouiller tout dans Myrise
3 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌

Outils chauds

VSCode Windows 64 bits Télécharger

VSCode Windows 64 bits Télécharger

Un éditeur IDE gratuit et puissant lancé par Microsoft

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Listes Sec

Listes Sec

SecLists est le compagnon ultime du testeur de sécurité. Il s'agit d'une collection de différents types de listes fréquemment utilisées lors des évaluations de sécurité, le tout en un seul endroit. SecLists contribue à rendre les tests de sécurité plus efficaces et productifs en fournissant facilement toutes les listes dont un testeur de sécurité pourrait avoir besoin. Les types de listes incluent les noms d'utilisateur, les mots de passe, les URL, les charges utiles floues, les modèles de données sensibles, les shells Web, etc. Le testeur peut simplement extraire ce référentiel sur une nouvelle machine de test et il aura accès à tous les types de listes dont il a besoin.

SublimeText3 version anglaise

SublimeText3 version anglaise

Recommandé : version Win, prend en charge les invites de code !

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel