


RAII avec les objets OpenGL en C : Comprendre les problèmes cachés
En programmation orientée objet C, l'acquisition de ressources est l'initialisation (RAII) est une technique utilisée pour gérer efficacement les ressources. Lors de l'utilisation d'objets OpenGL dans des classes C, il est courant de vouloir utiliser RAII pour garantir que l'objet OpenGL est correctement libéré lorsque la classe est détruite.
Considérez l'extrait de code suivant :
class BufferObject { private: GLuint buff_; public: BufferObject() { glGenBuffers(1, &buff_); } ~BufferObject() { glDeleteBuffers(1, &buff_); } };
Cette classe semble implémenter correctement RAII pour les objets OpenGL. Cependant, des problèmes surviennent lorsque la classe est copiée ou déplacée, comme en témoigne le code suivant :
vector<bufferobject> bufVec; { BufferObject some_buffer; //Initialize some_buffer; bufVec.push_back(some_buffer); } bufVec.back(); //buffer doesn't work. BufferObject InitBuffer() { BufferObject buff; //Do stuff with `buff` return buff; } auto buff = InitBuffer(); //Returned buffer doesn't work.</bufferobject>
Dans ces scénarios, les objets OpenGL deviennent inutilisables, entraînant des erreurs.
La raison car ce comportement réside dans les constructeurs de copie par défaut et les opérateurs d'affectation générés par le compilateur. Ces opérations copient simplement les membres de l'objet, ce qui entraîne plusieurs objets C référençant le même objet OpenGL sous-jacent. Lorsque l'objet C d'origine est détruit, il libère l'objet OpenGL, obligeant les autres objets à référencer une ressource détruite.
Pour résoudre ce problème, la classe BufferObject doit être de type déplacement uniquement. Cela signifie éliminer le constructeur de copie et l'opérateur d'affectation et fournir des équivalents de déplacement qui transfèrent la propriété de l'objet OpenGL au nouvel objet.
class BufferObject { private: GLuint buff_; public: BufferObject() { glGenBuffers(1, &buff_); } BufferObject(const BufferObject &) = delete; BufferObject &operator=(const BufferObject &) = delete; BufferObject(BufferObject &&other) : buff_(other.buff_) { other.buff_ = 0; } BufferObject &operator=(BufferObject &&other) { //ALWAYS check for self-assignment if(this != &other) { Release(); buff_ = other.buff_; other.buff_ = 0; } return *this; } ~BufferObject() {Release();} void Release(); { if(buff_) glDeleteBuffers(1, &buff_); } //Other members. };
Avec ces changements, la classe garantit que l'objet OpenGL est correctement géré et libéré, même lors de la copie ou du déplacement de la classe.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Cet article explique la bibliothèque de modèles standard C (STL), en se concentrant sur ses composants principaux: conteneurs, itérateurs, algorithmes et fonctors. Il détaille comment ces interagissent pour permettre la programmation générique, l'amélioration de l'efficacité du code et de la lisibilité

Cet article détaille l'utilisation efficace de l'algorithme STL en c. Il met l'accent sur le choix de la structure des données (vecteurs vs listes), l'analyse de la complexité des algorithmes (par exemple, STD :: Srieur vs std :: partial_sort), l'utilisation des itérateurs et l'exécution parallèle. Pièges communs comme

Cet article détaille la gestion efficace des exceptions en C, couvrant les mécanismes d'essai, de capture et de lancement. Il met l'accent sur les meilleures pratiques comme RAII, en évitant les blocs de capture inutiles et en enregistrant des exceptions pour un code robuste. L'article aborde également Perf

L'article discute de l'utilisation de Move Semantics en C pour améliorer les performances en évitant la copie inutile. Il couvre la mise en œuvre de constructeurs de déplace

Les plages de c 20 améliorent la manipulation des données avec l'expressivité, la composibilité et l'efficacité. Ils simplifient les transformations complexes et s'intègrent dans les bases de code existantes pour de meilleures performances et maintenabilité.

L'article traite de Dynamic Dispatch in C, ses coûts de performance et les stratégies d'optimisation. Il met en évidence les scénarios où la répartition dynamique a un impact

L'article discute de l'utilisation efficace des références de référence en C pour la sémantique de déplacement, le transfert parfait et la gestion des ressources, mettant en évidence les meilleures pratiques et les améliorations des performances. (159 caractères)

C La gestion de la mémoire utilise des pointeurs nouveaux, supprimés et intelligents. L'article traite du manuel par rapport à la gestion automatisée et de la façon dont les pointeurs intelligents empêchent les fuites de mémoire.


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

SublimeText3 Linux nouvelle version
Dernière version de SublimeText3 Linux

Télécharger la version Mac de l'éditeur Atom
L'éditeur open source le plus populaire

ZendStudio 13.5.1 Mac
Puissant environnement de développement intégré PHP

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

VSCode Windows 64 bits Télécharger
Un éditeur IDE gratuit et puissant lancé par Microsoft