


Utilisation de la fonction apply de Pandas pour calculer des valeurs en fonction des valeurs de la ligne précédente
Dans Pandas, la fonction apply permet l'application de fonctions personnalisées à chaque ligne d’un DataFrame. Cela peut s'avérer particulièrement utile lorsque les calculs nécessitent de référencer les valeurs des lignes précédentes du DataFrame.
Considérez le scénario suivant : nous avons un DataFrame avec les colonnes A, B, C et D. Nous devons calculer la colonne C pour la première ligne comme valeur de la colonne D. Par la suite, C pour les lignes suivantes est calculé en multipliant la valeur C de la ligne précédente par la valeur A de la ligne actuelle et en ajoutant le B de la ligne actuelle.
Malgré les tentatives d'utilisation de apply et shift, nous rencontrons une erreur clé due au calcul de C se produisant également dans la fonction apply. Pour résoudre ce problème, nous pouvons adopter l'approche suivante :
-
Calculer explicitement la première ligne :
- Attribuer la valeur de D au première ligne de C en utilisant df.loc[0, 'C'] = df.loc[0, 'D'].
-
Itérer et calculer les lignes suivantes :
-
Utilisez une boucle for pour parcourir les lignes restantes, en calculant C pour chaque ligne comme suit :
- df.loc[i, 'C'] = df.loc[i-1, 'C'] * df.loc[i, 'A'] df.loc[i, 'B']
-
En suivant cette approche, nous nous assurons que C pour chaque ligne est disponible avant de calculer les valeurs des lignes suivantes. Le DataFrame résultant s'alignera sur le résultat souhaité :
Index_Date A B C D 0 2015-01-31 10 10 10 10 1 2015-02-01 2 3 23 22 2 2015-02-02 10 60 290 280
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Vous pouvez apprendre les concepts de programmation de base et les compétences de Python dans les 2 heures. 1. Apprenez les variables et les types de données, 2. Flux de contrôle maître (instructions et boucles conditionnelles), 3. Comprenez la définition et l'utilisation des fonctions, 4. Démarrez rapidement avec la programmation Python via des exemples simples et des extraits de code.

Python est largement utilisé dans les domaines du développement Web, de la science des données, de l'apprentissage automatique, de l'automatisation et des scripts. 1) Dans le développement Web, les cadres Django et Flask simplifient le processus de développement. 2) Dans les domaines de la science des données et de l'apprentissage automatique, les bibliothèques Numpy, Pandas, Scikit-Learn et Tensorflow fournissent un fort soutien. 3) En termes d'automatisation et de script, Python convient aux tâches telles que les tests automatisés et la gestion du système.

Vous pouvez apprendre les bases de Python dans les deux heures. 1. Apprenez les variables et les types de données, 2. Structures de contrôle maître telles que si les instructions et les boucles, 3. Comprenez la définition et l'utilisation des fonctions. Ceux-ci vous aideront à commencer à écrire des programmes Python simples.

Comment enseigner les bases de la programmation novice en informatique dans les 10 heures? Si vous n'avez que 10 heures pour enseigner à l'informatique novice des connaissances en programmation, que choisissez-vous d'enseigner ...

Comment éviter d'être détecté lors de l'utilisation de FiddlereVerywhere pour les lectures d'homme dans le milieu lorsque vous utilisez FiddlereVerywhere ...

Chargement des fichiers de cornichons dans Python 3.6 Rapport de l'environnement Erreur: modulenotFoundError: NomoduLenamed ...

Comment résoudre le problème de la segmentation des mots jieba dans l'analyse des commentaires pittoresques? Lorsque nous effectuons des commentaires et des analyses pittoresques, nous utilisons souvent l'outil de segmentation des mots jieba pour traiter le texte ...

Comment utiliser l'expression régulière pour correspondre à la première étiquette fermée et à s'arrêter? Lorsque vous traitez avec HTML ou d'autres langues de balisage, des expressions régulières sont souvent nécessaires pour ...


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Adaptateur de serveur SAP NetWeaver pour Eclipse
Intégrez Eclipse au serveur d'applications SAP NetWeaver.

MinGW - GNU minimaliste pour Windows
Ce projet est en cours de migration vers osdn.net/projects/mingw, vous pouvez continuer à nous suivre là-bas. MinGW : un port Windows natif de GNU Compiler Collection (GCC), des bibliothèques d'importation et des fichiers d'en-tête librement distribuables pour la création d'applications Windows natives ; inclut des extensions du runtime MSVC pour prendre en charge la fonctionnalité C99. Tous les logiciels MinGW peuvent fonctionner sur les plates-formes Windows 64 bits.

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

VSCode Windows 64 bits Télécharger
Un éditeur IDE gratuit et puissant lancé par Microsoft

SublimeText3 version anglaise
Recommandé : version Win, prend en charge les invites de code !