Maison  >  Article  >  développement back-end  >  Affiner la classification LAMA ou texte avec des ressources limitées

Affiner la classification LAMA ou texte avec des ressources limitées

王林
王林original
2024-07-20 18:00:41526parcourir

Fine-tuning LLAMA or Text Classification with Limited Resources

J'ai récemment eu besoin de classer des phrases pour un cas d'utilisation particulier au travail. En me souvenant de la leçon 4 de Jeremy Howard : Débuter avec la PNL pour les débutants absolus, j'ai d'abord adapté son cahier pour peaufiner DEBERTA.

Cela a fonctionné, mais pas à ma satisfaction, alors j'étais curieux de savoir ce qui se passerait si j'utilisais un LLM comme LAMA 3. Le problème ? Ressources GPU limitées. Je n'avais accès qu'à une instance Tesla/Nvidia T4.

La recherche m'a conduit à QLORA. Ce tutoriel sur le réglage fin de LLama 3 LLM pour la classification textuelle du sentiment boursier à l'aide de QLoRA a été particulièrement utile. Pour mieux comprendre le tutoriel, j'ai adapté la Leçon 4 dans le cahier du tutoriel QLORA.

QLORA utilise deux techniques principales :

  1. Quantisation : réduit la précision du modèle, le rendant plus petit.
  2. LORA (Low-Rank Adaptation) : ajoute de petites couches pouvant être entraînées au lieu d'affiner l'ensemble du modèle.

Cela m'a permis d'entraîner LLAMA 3 8B sur un T4 de 16 Go de VRAM, en utilisant environ 12 Go de VRAM. Les résultats ont été étonnamment bons, avec une précision de prédiction supérieure à 90 %.

Confusion Matrix:
[[83  4]
[ 4  9]]
Classification Report:
              precision    recall  f1-score   support
         0.0       0.95      0.95      0.95        87
         1.0       0.69      0.69      0.69        13
    accuracy                           0.92       100
   macro avg       0.82      0.82      0.82       100
weighted avg       0.92      0.92      0.92       100
Balanced Accuracy Score: 0.8231653404067196
Accuracy Score: 0.92

Voici le notebook iPython détaillant le processus.

Cette approche montre qu'il est possible de travailler avec de grands modèles de langage sur un matériel limité. Travailler avec des contraintes conduit souvent à des opportunités créatives de résolution de problèmes et d’apprentissage. Dans ce cas, les limitations m'ont poussé à explorer et à mettre en œuvre des techniques de réglage plus efficaces.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration:
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn