recherche
Maisonbase de donnéestutoriel mysqlHive分析窗口函数(五) GROUPING SETS,GROUPING__ID,CUBE,ROLLUP

1.GROUPING SETS与另外哪种方式等价? 2.根据GROUP BY的维度的所有组合进行聚合由哪个关键字完成? 3.ROLLUP与ROLLUP关系是什么? GROUPING SETS,GROUPING__ID,CUBE,ROLLUP这几个分析函数通常用于OLAP中,不能累加,而且需要根据不同维度上钻和下钻的指标统

1.GROUPING SETS与另外哪种方式等价?
2.根据GROUP BY的维度的所有组合进行聚合由哪个关键字完成?

3.ROLLUP与ROLLUP关系是什么?


GROUPING SETS,GROUPING__ID,CUBE,ROLLUP 这几个分析函数通常用于OLAP中,不能累加,而且需要根据不同维度上钻和下钻的指标统计,比如,分小时、天、月的UV数。 Hive版本为 apache-hive-0.13.1 数据准备:
    2015-03,2015-03-10,cookie1
    2015-03,2015-03-10,cookie5
    2015-03,2015-03-12,cookie7
    2015-04,2015-04-12,cookie3
    2015-04,2015-04-13,cookie2
    2015-04,2015-04-13,cookie4
    2015-04,2015-04-16,cookie4
    2015-03,2015-03-10,cookie2
    2015-03,2015-03-10,cookie3
    2015-04,2015-04-12,cookie5
    2015-04,2015-04-13,cookie6
    2015-04,2015-04-15,cookie3
    2015-04,2015-04-15,cookie2
    2015-04,2015-04-16,cookie1

    CREATE EXTERNAL TABLE lxw1234 (
    month STRING,
    day STRING,
    cookieid STRING
    ) ROW FORMAT DELIMITED
    FIELDS TERMINATED BY ','
    stored as textfile location '/tmp/lxw11/';


    hive> select * from lxw1234;
    OK
    2015-03 2015-03-10      cookie1
    2015-03 2015-03-10      cookie5
    2015-03 2015-03-12      cookie7
    2015-04 2015-04-12      cookie3
    2015-04 2015-04-13      cookie2
    2015-04 2015-04-13      cookie4
    2015-04 2015-04-16      cookie4
    2015-03 2015-03-10      cookie2
    2015-03 2015-03-10      cookie3
    2015-04 2015-04-12      cookie5
    2015-04 2015-04-13      cookie6
    2015-04 2015-04-15      cookie3
    2015-04 2015-04-15      cookie2
    2015-04 2015-04-16      cookie1

GROUPING SETS
在一个GROUP BY查询中,根据不同的维度组合进行聚合,等价于将不同维度的GROUP BY结果集进行UNION ALL
    SELECT
    month,
    day,
    COUNT(DISTINCT cookieid) AS uv,
    GROUPING__ID
    FROM lxw1234
    GROUP BY month,day
    GROUPING SETS (month,day)
    ORDER BY GROUPING__ID;

    month      day            uv      GROUPING__ID
    ------------------------------------------------
    2015-03    NULL            5       1
    2015-04    NULL            6       1
    NULL       2015-03-10      4       2
    NULL       2015-03-12      1       2
    NULL       2015-04-12      2       2
    NULL       2015-04-13      3       2
    NULL       2015-04-15      2       2
    NULL       2015-04-16      2       2


    等价于
    SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM lxw1234 GROUP BY month
    UNION ALL
    SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM lxw1234 GROUP BY day

再如:
    SELECT
    month,
    day,
    COUNT(DISTINCT cookieid) AS uv,
    GROUPING__ID
    FROM lxw1234
    GROUP BY month,day
    GROUPING SETS (month,day,(month,day))
    ORDER BY GROUPING__ID;

    month         day             uv      GROUPING__ID
    ------------------------------------------------
    2015-03       NULL            5       1
    2015-04       NULL            6       1
    NULL          2015-03-10      4       2
    NULL          2015-03-12      1       2
    NULL          2015-04-12      2       2
    NULL          2015-04-13      3       2
    NULL          2015-04-15      2       2
    NULL          2015-04-16      2       2
    2015-03       2015-03-10      4       3
    2015-03       2015-03-12      1       3
    2015-04       2015-04-12      2       3
    2015-04       2015-04-13      3       3
    2015-04       2015-04-15      2       3
    2015-04       2015-04-16      2       3


    等价于
    SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM lxw1234 GROUP BY month
    UNION ALL
    SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM lxw1234 GROUP BY day
    UNION ALL
    SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM lxw1234 GROUP BY month,day

其中的 GROUPING__ID,表示结果属于哪一个分组集合。

CUBE
根据GROUP BY的维度的所有组合进行聚合。
    SELECT
    month,
    day,
    COUNT(DISTINCT cookieid) AS uv,
    GROUPING__ID
    FROM lxw1234
    GROUP BY month,day
    WITH CUBE
    ORDER BY GROUPING__ID;


    month                              day             uv     GROUPING__ID
    --------------------------------------------
    NULL            NULL            7       0
    2015-03         NULL            5       1
    2015-04         NULL            6       1
    NULL            2015-04-12      2       2
    NULL            2015-04-13      3       2
    NULL            2015-04-15      2       2
    NULL            2015-04-16      2       2
    NULL            2015-03-10      4       2
    NULL            2015-03-12      1       2
    2015-03         2015-03-10      4       3
    2015-03         2015-03-12      1       3
    2015-04         2015-04-16      2       3
    2015-04         2015-04-12      2       3
    2015-04         2015-04-13      3       3
    2015-04         2015-04-15      2       3



    等价于
    SELECT NULL,NULL,COUNT(DISTINCT cookieid) AS uv,0 AS GROUPING__ID FROM lxw1234
    UNION ALL
    SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM lxw1234 GROUP BY month
    UNION ALL
    SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM lxw1234 GROUP BY day
    UNION ALL
    SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM lxw1234 GROUP BY month,day

ROLLUP
是CUBE的子集,以最左侧的维度为主,从该维度进行层级聚合。
    比如,以month维度进行层级聚合:
    SELECT
    month,
    day,
    COUNT(DISTINCT cookieid) AS uv,
    GROUPING__ID  
    FROM lxw1234
    GROUP BY month,day
    WITH ROLLUP
    ORDER BY GROUPING__ID;

    month                              day             uv     GROUPING__ID
    ---------------------------------------------------
    NULL             NULL            7       0
    2015-03          NULL            5       1
    2015-04          NULL            6       1
    2015-03          2015-03-10      4       3
    2015-03          2015-03-12      1       3
    2015-04          2015-04-12      2       3
    2015-04          2015-04-13      3       3
    2015-04          2015-04-15      2       3
    2015-04          2015-04-16      2       3

    可以实现这样的上钻过程:
    月天的UV->月的UV->总UV

复制代码

    --把month和day调换顺序,则以day维度进行层级聚合:

    SELECT
    day,
    month,
    COUNT(DISTINCT cookieid) AS uv,
    GROUPING__ID  
    FROM lxw1234
    GROUP BY day,month
    WITH ROLLUP
    ORDER BY GROUPING__ID;


    day                                month              uv     GROUPING__ID
    -------------------------------------------------------
    NULL            NULL               7       0
    2015-04-13      NULL               3       1
    2015-03-12      NULL               1       1
    2015-04-15      NULL               2       1
    2015-03-10      NULL               4       1
    2015-04-16      NULL               2       1
    2015-04-12      NULL               2       1
    2015-04-12      2015-04            2       3
    2015-03-10      2015-03            4       3
    2015-03-12      2015-03            1       3
    2015-04-13      2015-04            3       3
    2015-04-15      2015-04            2       3
    2015-04-16      2015-04            2       3

    可以实现这样的上钻过程:
    天月的UV->天的UV->总UV
    (这里,根据天和月进行聚合,和根据天聚合结果一样,因为有父子关系,如果是其他维度组合的话,就会不一样)


Déclaration
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Expliquez le pool de tampons InNODB et son importance pour la performance.Expliquez le pool de tampons InNODB et son importance pour la performance.Apr 19, 2025 am 12:24 AM

InnodBBufferPool réduit les E / S de disque en mettant en cache des données et des pages d'indexation, améliorant les performances de la base de données. Son principe de travail comprend: 1. La lecture des données: lire les données de BufferPool; 2. Écriture de données: Après avoir modifié les données, écrivez dans BufferPool et actualisez-les régulièrement sur le disque; 3. Gestion du cache: utilisez l'algorithme LRU pour gérer les pages de cache; 4. Mécanisme de lecture: Chargez à l'avance des pages de données adjacentes. En dimensionner le tampon et en utilisant plusieurs instances, les performances de la base de données peuvent être optimisées.

MySQL vs d'autres langages de programmation: une comparaisonMySQL vs d'autres langages de programmation: une comparaisonApr 19, 2025 am 12:22 AM

Par rapport à d'autres langages de programmation, MySQL est principalement utilisé pour stocker et gérer les données, tandis que d'autres langages tels que Python, Java et C sont utilisés pour le traitement logique et le développement d'applications. MySQL est connu pour ses performances élevées, son évolutivité et son support multiplateforme, adapté aux besoins de gestion des données, tandis que d'autres langues présentent des avantages dans leurs domaines respectifs tels que l'analyse des données, les applications d'entreprise et la programmation système.

Apprendre MySQL: un guide étape par étape pour les nouveaux utilisateursApprendre MySQL: un guide étape par étape pour les nouveaux utilisateursApr 19, 2025 am 12:19 AM

MySQL vaut la peine d'être appris car il s'agit d'un puissant système de gestion de la base de données open source adapté au stockage, à la gestion et à l'analyse des données. 1) MySQL est une base de données relationnelle qui utilise SQL pour faire fonctionner les données et convient à la gestion structurée des données. 2) Le langage SQL est la clé pour interagir avec MySQL et prend en charge les opérations CRUD. 3) Le principe de travail de MySQL inclut l'architecture client / serveur, le moteur de stockage et l'optimiseur de requête. 4) L'utilisation de base comprend la création de bases de données et de tables, et l'utilisation avancée implique de rejoindre des tables à l'aide de la jointure. 5) Les erreurs courantes incluent les erreurs de syntaxe et les problèmes d'autorisation, et les compétences de débogage incluent la vérification de la syntaxe et l'utilisation des commandes Explication. 6) L'optimisation des performances implique l'utilisation d'index, l'optimisation des instructions SQL et la maintenance régulière des bases de données.

MySQL: Compétences essentielles pour les débutants à maîtriserMySQL: Compétences essentielles pour les débutants à maîtriserApr 18, 2025 am 12:24 AM

MySQL convient aux débutants pour acquérir des compétences de base de données. 1. Installez les outils MySQL Server et Client. 2. Comprendre les requêtes SQL de base, telles que SELECT. 3. 掌握数据操作: : 创建表、插入、更新、删除数据。 4. 学习高级技巧: : 子查询和窗口函数。 5. 调试和优化: : 检查语法、使用索引、避免 Sélectionner * , 并使用 Limite。

MySQL: données structurées et bases de données relationnellesMySQL: données structurées et bases de données relationnellesApr 18, 2025 am 12:22 AM

MySQL gère efficacement les données structurées par la structure de la table et la requête SQL, et met en œuvre des relations inter-tableaux à travers des clés étrangères. 1. Définissez le format de données et tapez lors de la création d'une table. 2. Utilisez des clés étrangères pour établir des relations entre les tables. 3. Améliorer les performances par l'indexation et l'optimisation des requêtes. 4. Bases de données régulièrement sauvegarde et surveillent régulièrement la sécurité des données et l'optimisation des performances.

MySQL: fonctionnalités et capacités clés expliquésMySQL: fonctionnalités et capacités clés expliquésApr 18, 2025 am 12:17 AM

MySQL est un système de gestion de base de données relationnel open source qui est largement utilisé dans le développement Web. Ses caractéristiques clés incluent: 1. Prend en charge plusieurs moteurs de stockage, tels que InNODB et Myisam, adaptés à différents scénarios; 2. Fournit des fonctions de réplication à esclave maître pour faciliter l'équilibrage de la charge et la sauvegarde des données; 3. Améliorez l'efficacité de la requête grâce à l'optimisation des requêtes et à l'utilisation d'index.

Le but de SQL: interagir avec les bases de données MySQLLe but de SQL: interagir avec les bases de données MySQLApr 18, 2025 am 12:12 AM

SQL est utilisé pour interagir avec la base de données MySQL pour réaliser l'ajout de données, la suppression, la modification, l'inspection et la conception de la base de données. 1) SQL effectue des opérations de données via des instructions SELECT, INSERT, UPDATE, DELETE; 2) Utiliser des instructions Create, Alter, Drop pour la conception et la gestion de la base de données; 3) Les requêtes complexes et l'analyse des données sont mises en œuvre via SQL pour améliorer l'efficacité de la prise de décision commerciale.

MySQL pour les débutants: commencer la gestion de la base de donnéesMySQL pour les débutants: commencer la gestion de la base de donnéesApr 18, 2025 am 12:10 AM

Les opérations de base de MySQL incluent la création de bases de données, les tables et l'utilisation de SQL pour effectuer des opérations CRUD sur les données. 1. Créez une base de données: CreatedAtAbaseMy_First_DB; 2. Créez un tableau: CreateTableBooks (idIntauto_inCmentPrimaryKey, TitleVarchar (100) notnull, AuthorVarchar (100) notnull, publied_yearint); 3. Données d'insertion: INSERTINTOBOOKS (titre, auteur, publié_year) VA

See all articles

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

Listes Sec

Listes Sec

SecLists est le compagnon ultime du testeur de sécurité. Il s'agit d'une collection de différents types de listes fréquemment utilisées lors des évaluations de sécurité, le tout en un seul endroit. SecLists contribue à rendre les tests de sécurité plus efficaces et productifs en fournissant facilement toutes les listes dont un testeur de sécurité pourrait avoir besoin. Les types de listes incluent les noms d'utilisateur, les mots de passe, les URL, les charges utiles floues, les modèles de données sensibles, les shells Web, etc. Le testeur peut simplement extraire ce référentiel sur une nouvelle machine de test et il aura accès à tous les types de listes dont il a besoin.

PhpStorm version Mac

PhpStorm version Mac

Le dernier (2018.2.1) outil de développement intégré PHP professionnel

Télécharger la version Mac de l'éditeur Atom

Télécharger la version Mac de l'éditeur Atom

L'éditeur open source le plus populaire

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Puissant environnement de développement intégré PHP