我目前能够找到的只有像Python Geo-Spatial Devlopment[1]这样有一定年龄的教学书籍,和零散的技术文章[2]。可是具体该怎么系统学习应用完全没方向,求教。例如mapfish[3],看了一下介绍就觉得很牛逼,可是不会用。。。
[1]Python Geo-Spatial Development (豆瓣)
[2]W-06: Solid Web Mapping with Python
[3]MapFish — MapFish
回复内容:
GIS 和 python 的结合有很多种可能性- Arcpy 参考ArcPy and ArcGIS (豆瓣), pyQGIS 参考PyQGIS Developer Cookbook
- Geopython GIS相关库
- GDAL 参考 Welcome to the Python GDAL/OGR Cookbook!
- 各种空间数据库,如 spatialite 参考 SpatiaLite Cookbook
基础库(抽象库)
- GDAL 不多说,GIS万物本源
- Proj.4 制图学投影转换库
- geojson geojson数据处理,点线面
高级库
- Shapley GIS的图像处理
- Fiona GIS数据读入写出
- Rtree Rtree空间索引
- pyproj Proj.4的接口扩展
- OWSLib WMS地图服务发放
- basemap 画地图
超高级库
- geopandas 整合了pandas,shapely,fiona,descartes,pyproj和rtrees可以直接用于数据处理
- geodjango django出品,保护GDAL,GEOS等可以发送地图服务
而如今,javascript在互联网的地位也变得越来越重要,GIS+JS的项目也氤氲而生,所以问题来了。参考:有哪些GIS+JavaScript(node.js)的开发经验值得分享? - Node.js
或者关注我的博客,写得不是很好,希望各路大神多多留言指导。
Awesome GIS(GIS Tech Stack技术栈)
语言Geomatics专栏点此:Geomatics(GIS,GPS,RS,Surveying)
-
Python 最好的快速开发语言,是一门API艺术
- awesome-python
- 1简单的入门
- 2总结入门坑及基础资源
- 3Geopython GIS相关库
- 4Python的常用库入门
- 5Flask框架
- 6入门爬虫坑--网页数据压缩(python deflate gzip)
- 7Requests爬虫技巧
-
Node.js 最炙手可热的网络技术源泉,可用于WebGIS
- awesome-javascript
- 1常用Global库
- 2入门及GeoNode.js GIS相关库
- Leaflet 兼容移动端,和现代的一些框架一样优先考虑移动端
- 1leaflet入门
- 2简单插件编写leaflet-pip-v2
- 3进阶插件编写geojsonFilter
- Mapbox总有人讨论“Mapbox VS Leaflet?”这是个烂问题,Mapbox是Leaflet的超集,就像Typescript和Javascript之间的关系一样
- Openlayer3扯淡大叔教程
- Turf js层面做出简单的空间分析
- Geoserver 基于Java的地理信息服务的发布,使用简单
- Mapserver 基于C语言的地理信息服务的发布,内存占用小
- GDAL 数据格式转换
- 1GDAL命令行入门
- 2python for GDAL
- 3gdal CLI Cheat Sheet
- GeoJSON 开源地理信息JSON格式
- awesome-geojson
- geojson-js-utils 空间数据简单处理js实现
- geojson-python-utils空间数据简单处理python实现
- TopoJSON 开源地理信息JSON格式,大小要比GeoJSON小40%
- TileJSON 瓦片数据包装的JSON格式,用的不多
- WKT&WKB 文本标记语言表示矢量数据
- WKT&WKB 笔记一:格式介绍
- Spatialite 空间数据的查询等处理,小项目足矣
- 1简单的入门
- 2CLI Cheat Sheet
- 3python for Spatialite
- 4NET平台使用spatilite扩展
- 5Spatiliate2GeoJson数据的转换
- Postgresql 大型空间数据项目
- MBTILES 承载瓦片的数据,快速索引
- 1入门与简单应用
- Global Mapper 专门用作已有栅格图像切片
- Mapnik 专门用于矢量数据的切片
- TileMill 在矢量数据渲染时,运用CartoCSS对矢量数据赋予样式
- QGIS 开源GIS数据处理桌面软件,其中包含Grass,SAGA两个学术界开源GIS平台
- 1简单的介绍
- 2地图综合
- Mapsharper 数据综合神器
- 1地图综合神器
- 地理空间数据云 没想到数据来的这么快
- 1网页端JS的缓存问题
- 2Angular遇到的一些坑
- 3SpatialiteSharp的使用坑
整个技术栈主要针对的是轻量或者小项目去考虑,运用一些流行的尽可能开源的工具去做,这是我的一些想法和笔记,详情参考从mapbox的开源工具看Web GIS的发展,希望能给您一点点帮助。PS:我在github上看到一个awesome gis,并非我主导的,希望各位GISer可以一起参与修改。
转载,请表明出处。总目录Awesome GIS
python之于GIS与python之于IT类似GISer采用python的原因也在于“人生苦短,我用python”
python在gis中的应用非常之广
1. desktop GIS:
ArcGIS从版本10开始不再支持原来的VBA,而改用python
QGIS本身大部分的代码特别是插件部分可以采用python进行开发
2. 地图引擎
mapnik—基于C++引擎的顶级地图引擎库,和python结合比较紧密
mapfish—支持部分专题地图在线制作
3. webgis
python+geodjango 是最常用也最庞大的后台框架
GISer使用python一定要充分发挥python语言的特性
如ArcGIS集成phthon是利用了python的脚本语言特性
后台webgis等服务,可以发挥python作为语言黏合剂的特性,充分利用已有的GIS算法库 1、如果之前没有接触过Python但有一定的编程基础,极力推荐 深入 Python 3 这本书,对比《Python基础教程》的基础全面,这本书更加简洁、实用、上手快。
2、Python与ArcGIS结合,推荐《Programming ArcGIS 10.1 with Python Cookbook》(英文版)这本书,主要使用简短的Python脚本批处理ArcGIS文件,实用、上手快。
附图:


Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Choosing Python or C depends on project requirements: 1) If you need rapid development, data processing and prototype design, choose Python; 2) If you need high performance, low latency and close hardware control, choose C.

By investing 2 hours of Python learning every day, you can effectively improve your programming skills. 1. Learn new knowledge: read documents or watch tutorials. 2. Practice: Write code and complete exercises. 3. Review: Consolidate the content you have learned. 4. Project practice: Apply what you have learned in actual projects. Such a structured learning plan can help you systematically master Python and achieve career goals.

Methods to learn Python efficiently within two hours include: 1. Review the basic knowledge and ensure that you are familiar with Python installation and basic syntax; 2. Understand the core concepts of Python, such as variables, lists, functions, etc.; 3. Master basic and advanced usage by using examples; 4. Learn common errors and debugging techniques; 5. Apply performance optimization and best practices, such as using list comprehensions and following the PEP8 style guide.

Python is suitable for beginners and data science, and C is suitable for system programming and game development. 1. Python is simple and easy to use, suitable for data science and web development. 2.C provides high performance and control, suitable for game development and system programming. The choice should be based on project needs and personal interests.

Python is more suitable for data science and rapid development, while C is more suitable for high performance and system programming. 1. Python syntax is concise and easy to learn, suitable for data processing and scientific computing. 2.C has complex syntax but excellent performance and is often used in game development and system programming.

It is feasible to invest two hours a day to learn Python. 1. Learn new knowledge: Learn new concepts in one hour, such as lists and dictionaries. 2. Practice and exercises: Use one hour to perform programming exercises, such as writing small programs. Through reasonable planning and perseverance, you can master the core concepts of Python in a short time.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Atom editor mac version download
The most popular open source editor

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

Zend Studio 13.0.1
Powerful PHP integrated development environment