Home >Backend Development >Python Tutorial >如何用爬虫下载中国土地市场网的土地成交数据?
作为毕业狗想研究下土地出让方面的信息,需要每一笔的土地出让数据。想从中国土地市场网的土地成交结果公告(http://www.landchina.com/default.aspx?tabid=263&ComName=default)中点击每一笔土地,在跳转后的详细页面中下载“土地用途” “成交价格” “供地方式” “项目位置”等信息,由于共有100多万笔土地成交信息,手动查找是不可能了,想问下能不能用爬虫给下载下来?以及预计难度和耗费时间?跪谢各位。
<code class="language-text">#!/usr/bin/env python
# -*- coding: utf-8 -*-
import requests
from bs4 import BeautifulSoup
import time
import random
import sys
def get_post_data(url, headers):
# 访问一次网页,获取post需要的信息
data = {
'TAB_QuerySubmitSortData': '',
'TAB_RowButtonActionControl': '',
}
try:
req = requests.get(url, headers=headers)
except Exception, e:
print 'get baseurl failed, try again!', e
sys.exit(1)
try:
soup = BeautifulSoup(req.text, "html.parser")
TAB_QueryConditionItem = soup.find(
'input', id="TAB_QueryConditionItem270").get('value')
# print TAB_QueryConditionItem
data['TAB_QueryConditionItem'] = TAB_QueryConditionItem
TAB_QuerySortItemList = soup.find(
'input', id="TAB_QuerySort0").get('value')
# print TAB_QuerySortItemList
data['TAB_QuerySortItemList'] = TAB_QuerySortItemList
data['TAB_QuerySubmitOrderData'] = TAB_QuerySortItemList
__EVENTVALIDATION = soup.find(
'input', id='__EVENTVALIDATION').get('value')
# print __EVENTVALIDATION
data['__EVENTVALIDATION'] = __EVENTVALIDATION
__VIEWSTATE = soup.find('input', id='__VIEWSTATE').get('value')
# print __VIEWSTATE
data['__VIEWSTATE'] = __VIEWSTATE
except Exception, e:
print 'get post data failed, try again!', e
sys.exit(1)
return data
def get_info(url, headers):
req = requests.get(url, headers=headers)
soup = BeautifulSoup(req.text, "html.parser")
items = soup.find(
'table', id="mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1")
# 所需信息组成字典
info = {}
# 行政区
division = items.find(
'span', id="mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r1_c2_ctrl").get_text().encode('utf-8')
info['XingZhengQu'] = division
# 项目位置
location = items.find(
'span', id="mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r16_c2_ctrl").get_text().encode('utf-8')
info['XiangMuWeiZhi'] = location
# 面积(公顷)
square = items.find(
'span', id="mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r2_c2_ctrl").get_text().encode('utf-8')
info['MianJi'] = square
# 土地用途
purpose = items.find(
'span', id="mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r3_c2_ctrl").get_text().encode('utf-8')
info['TuDiYongTu'] = purpose
# 供地方式
source = items.find(
'span', id="mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r3_c4_ctrl").get_text().encode('utf-8')
info['GongDiFangShi'] = source
# 成交价格(万元)
price = items.find(
'span', id="mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r20_c4_ctrl").get_text().encode('utf-8')
info['ChengJiaoJiaGe'] = price
# print info
# 用唯一值的电子监管号当key, 所需信息当value的字典
all_info = {}
Key_ID = items.find(
'span', id="mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r1_c4_ctrl").get_text().encode('utf-8')
all_info[Key_ID] = info
return all_info
def get_pages(baseurl, headers, post_data, date):
print 'date', date
# 补全post data
post_data['TAB_QuerySubmitConditionData'] = post_data[
'TAB_QueryConditionItem'] + ':' + date
page = 1
while True:
print ' page {0}'.format(page)
# 休息一下,防止被网页识别为爬虫机器人
time.sleep(random.random() * 3)
post_data['TAB_QuerySubmitPagerData'] = str(page)
req = requests.post(baseurl, data=post_data, headers=headers)
# print req
soup = BeautifulSoup(req.text, "html.parser")
items = soup.find('table', id="TAB_contentTable").find_all(
'tr', onmouseover=True)
# print items
for item in items:
print item.find('td').get_text()
link = item.find('a')
if link:
print item.find('a').text
url = 'http://www.landchina.com/' + item.find('a').get('href')
print get_info(url, headers)
else:
print 'no content, this ten days over'
return
break
page += 1
if __name__ == "__main__":
# time.time()
baseurl = 'http://www.landchina.com/default.aspx?tabid=263'
headers = {
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/46.0.2490.71 Safari/537.36',
'Host': 'www.landchina.com'
}
post_data = (get_post_data(baseurl, headers))
date = '2015-11-21~2015-11-30'
get_pages(baseurl, headers, post_data, date)
</code>
不请自来,知乎首答,同为大四毕业狗<code class="language-text"># -*- coding: gb18030 -*-
'landchina 爬起来!'
import requests
import csv
from bs4 import BeautifulSoup
import datetime
import re
import os
class Spider():
def __init__(self):
self.url='http://www.landchina.com/default.aspx?tabid=263'
#这是用post要提交的数据
self.postData={ 'TAB_QueryConditionItem':'9f2c3acd-0256-4da2-a659-6949c4671a2a',
'TAB_QuerySortItemList':'282:False',
#日期
'TAB_QuerySubmitConditionData':'9f2c3acd-0256-4da2-a659-6949c4671a2a:',
'TAB_QuerySubmitOrderData':'282:False',
#第几页
'TAB_QuerySubmitPagerData':''}
self.rowName=[u'行政区',u'电子监管号',u'项目名称',u'项目位置',u'面积(公顷)',u'土地来源',u'土地用途',u'供地方式',u'土地使用年限',u'行业分类',u'土地级别',u'成交价格(万元)',u'土地使用权人',u'约定容积率下限',u'约定容积率上限',u'约定交地时间',u'约定开工时间',u'约定竣工时间',u'实际开工时间',u'实际竣工时间',u'批准单位',u'合同签订日期']
#这是要抓取的数据,我把除了分期约定那四项以外的都抓取了
self.info=[
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r1_c2_ctrl',#0
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r1_c4_ctrl',#1
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r17_c2_ctrl',#2
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r16_c2_ctrl',#3
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r2_c2_ctrl',#4
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r2_c4_ctrl',#5
#这条信息是土地来源,抓取下来的是数字,它要经过换算得到土地来源,不重要,我就没弄了
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r3_c2_ctrl',#6
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r3_c4_ctrl',#7
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r19_c2_ctrl', #8
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r19_c4_ctrl',#9
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r20_c2_ctrl',#10
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r20_c4_ctrl',#11
## 'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f3_r2_c1_0_ctrl',
## 'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f3_r2_c2_0_ctrl',
## 'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f3_r2_c3_0_ctrl',
## 'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f3_r2_c4_0_ctrl',
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r9_c2_ctrl',#12
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f2_r1_c2_ctrl',
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f2_r1_c4_ctrl',
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r21_c4_ctrl',
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r22_c2',
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r22_c4_ctrl',
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r10_c2_ctrl',
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r10_c4_ctrl',
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r14_c2_ctrl',
'mainModuleContainer_1855_1856_ctl00_ctl00_p1_f1_r14_c4_ctrl']
#第一步
def handleDate(self,year,month,day):
#返回日期数据
'return date format %Y-%m-%d'
date=datetime.date(year,month,day)
# print date.datetime.datetime.strftime('%Y-%m-%d')
return date #日期对象
def timeDelta(self,year,month):
#计算一个月有多少天
date=datetime.date(year,month,1)
try:
date2=datetime.date(date.year,date.month+1,date.day)
except:
date2=datetime.date(date.year+1,1,date.day)
dateDelta=(date2-date).days
return dateDelta
def getPageContent(self,pageNum,date):
#指定日期和页数,打开对应网页,获取内容
postData=self.postData.copy()
#设置搜索日期
queryDate=date.strftime('%Y-%m-%d')+'~'+date.strftime('%Y-%m-%d')
postData['TAB_QuerySubmitConditionData']+=queryDate
#设置页数
postData['TAB_QuerySubmitPagerData']=str(pageNum)
#请求网页
r=requests.post(self.url,data=postData,timeout=30)
r.encoding='gb18030'
pageContent=r.text
# f=open('content.html','w')
# f.write(content.encode('gb18030'))
# f.close()
return pageContent
#第二步
def getAllNum(self,date):
#1无内容 2只有1页 3 1—200页 4 200页以上
firstContent=self.getPageContent(1,date)
if u'没有检索到相关数据' in firstContent:
print date,'have','0 page'
return 0
pattern=re.compile(u'<td.>共(.*?)页.*?')
result=re.search(pattern,firstContent)
if result==None:
print date,'have','1 page'
return 1
if int(result.group(1))',re.S)
results=re.findall(pattern,pageContent)
for result in results:
links.append('http://www.landchina.com/default.aspx?tabid=386'+result)
return links
def getAllLinks(self,allNum,date):
pageNum=1
allLinks=[]
while pageNum</td.></code>
你可以去神箭手云爬虫开发平台看看。在云上简单几行js就可以实现爬虫,如果这都懒得做也可以联系官方进行定制,任何网站都可以爬,总之是个很方便的爬虫基础设施平台。
这个结构化如此清晰的数据,要采集这个数据是很容易的。 通过多年的数据处理经验,可以给你以下几个建议: