list解析
先看下面的例子,这个例子是想得到1到9的每个整数的平方,并且将结果放在list中打印出来
>>> power2 = [] >>> for i in range(1,10): ... power2.append(i*i) ... >>> power2 [1, 4, 9, 16, 25, 36, 49, 64, 81]
python有一个非常有意思的功能,就是list解析,就是这样的:
>>> squares = [x**2 for x in range(1,10)] >>> squares [1, 4, 9, 16, 25, 36, 49, 64, 81]
看到这个结果,看官还不惊叹吗?这就是python,追求简洁优雅的python!
其官方文档中有这样一段描述,道出了list解析的真谛:
List comprehensions provide a concise way to create lists. Common applications are to make new lists where each element is the result of some operations applied to each member of another sequence or iterable, or to create a subsequence of those elements that satisfy a certain condition.
还记得前面一讲中的那个问题吗?
找出100以内的能够被3整除的正整数。
我们用的方法是:
aliquot = [] for n in range(1,100): if n%3 == 0: aliquot.append(n) print aliquot
好了。现在用list解析重写,会是这样的:
>>> aliquot = [n for n in range(1,100) if n%3==0] >>> aliquot [3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99]
震撼了。绝对牛X!
其实,不仅仅对数字组成的list,所有的都可以如此操作。请在平复了激动的心之后,默默地看下面的代码,感悟一下list解析的魅力。
>>> mybag = [' glass',' apple','green leaf '] #有的前面有空格,有的后面有空格 >>> [one.strip() for one in mybag] #去掉元素前后的空格 ['glass', 'apple', 'green leaf'] enumerate
这是一个有意思的内置函数,本来我们可以通过for i in range(len(list))的方式得到一个list的每个元素编号,然后在用list[i]的方式得到该元素。如果要同时得到元素编号和元素怎么办?就是这样了:
>>> for i in range(len(week)): ... print week[i]+' is '+str(i) #注意,i是int类型,如果和前面的用+连接,必须是str类型 ... monday is 0 sunday is 1 friday is 2
python中提供了一个内置函数enumerate,能够实现类似的功能
>>> for (i,day) in enumerate(week): ... print day+' is '+str(i) ... monday is 0 sunday is 1 friday is 2
算是一个有意思的内置函数了,主要是提供一个简单快捷的方法。
官方文档是这么说的:
代码如下:
Return an enumerate object. sequence must be a sequence, an iterator, or some other object which supports iteration. The next() method of the iterator returned by enumerate() returns a tuple containing a count (from start which defaults to 0) and the values obtained from iterating over sequence:
顺便抄录几个例子,供看官欣赏,最好实验一下。
>>> seasons = ['Spring', 'Summer', 'Fall', 'Winter'] >>> list(enumerate(seasons)) [(0, 'Spring'), (1, 'Summer'), (2, 'Fall'), (3, 'Winter')] >>> list(enumerate(seasons, start=1)) [(1, 'Spring'), (2, 'Summer'), (3, 'Fall'), (4, 'Winter')]
在这里有类似(0,'Spring')这样的东西,这是另外一种数据类型,待后面详解。

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Zend Studio 13.0.1
Powerful PHP integrated development environment

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function
