Home >Backend Development >Python Tutorial >python计算最大优先级队列实例

python计算最大优先级队列实例

WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWB
WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOriginal
2016-06-06 11:28:551065browse

代码如下:


# -*- coding: utf-8 -*-

class Heap(object):

    @classmethod
    def parent(cls, i):
        """父结点下标"""
        return int((i - 1) >> 1);

    @classmethod
    def left(cls, i):
        """左儿子下标"""
        return (i

    @classmethod
    def right(cls, i):
        """右儿子下标"""
        return (i

class MaxPriorityQueue(list, Heap):

    @classmethod
    def max_heapify(cls, A, i, heap_size):
        """最大堆化A[i]为根的子树"""
        l, r = cls.left(i), cls.right(i)
        if l A[i]:
            largest = l
        else:
            largest = i
        if r A[largest]:
            largest = r
        if largest != i:
            A[i], A[largest] = A[largest], A[i]
            cls.max_heapify(A, largest, heap_size)

    def maximum(self):
        """返回最大元素,伪码如下:
        HEAP-MAXIMUM(S)
        1  return A[1]

        T(n) = O(1)
        """
        return self[0]

    def extract_max(self):
        """去除并返回最大元素,伪码如下:
        HEAP-EXTRACT-MAX(A)
        1  if heap-size[A]         2    then error "heap underflow"
        3  max ← A[1]
        4  A[1] ← A[heap-size[A]] // 尾元素放到第一位
        5  heap-size[A] ← heap-size[A] - 1 // 减小heap-size[A]
        6  MAX-HEAPIFY(A, 1) // 保持最大堆性质
        7  return max

        T(n) = θ(lgn)
        """
        heap_size = len(self)
        assert heap_size > 0, "heap underflow"
        val = self[0]
        tail = heap_size - 1
        self[0] = self[tail]
        self.max_heapify(self, 0, tail)
        self.pop(tail)
        return val

    def increase_key(self, i, key):
        """将i处的值增加到key,伪码如下:
        HEAP-INCREASE-KEY(A, i, key)
        1  if key         2    the error "new key is smaller than current key"
        3  A[i] ← key
        4  while i > 1 and A[PARENT(i)]         5    do exchange A[i] ↔ A[PARENT(i)] // 交换两元素
        6       i ← PARENT(i) // 指向父结点位置

        T(n) = θ(lgn)
        """
        val = self[i]
        assert key >= val, "new key is smaller than current key"
        self[i] = key
        parent = self.parent
        while i > 0 and self[parent(i)]             self[i], self[parent(i)] = self[parent(i)], self[i]
            i = parent(i)

    def insert(self, key):
        """将key插入A,伪码如下:
        MAX-HEAP-INSERT(A, key)
        1  heap-size[A] ← heap-size[A] + 1 // 对元素个数增加
        2  A[heap-size[A]] ← -∞ // 初始新增加元素为-∞
        3  HEAP-INCREASE-KEY(A, heap-size[A], key) // 将新增元素增加到key

        T(n) = θ(lgn)
        """
        self.append(float('-inf'))
        self.increase_key(len(self) - 1, key)

if __name__ == '__main__':
    import random

    keys = range(10)
    random.shuffle(keys)
    print(keys)

    queue = MaxPriorityQueue() # 插入方式建最大堆
    for i in keys:
        queue.insert(i)
    print(queue)

    print('*' * 30)

    for i in range(len(keys)):
        val = i % 3
        if val == 0:
            val = queue.extract_max() # 去除并返回最大元素
        elif val == 1:
            val = queue.maximum() # 返回最大元素
        else:
            val = queue[1] + 10
            queue.increase_key(1, val) # queue[1]增加10
        print(queue, val)

    print([queue.extract_max() for i in range(len(queue))])

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn