search
HomeBackend DevelopmentPython TutorialHow to read a data set in python

How to read a data set in python

Apr 02, 2024 pm 06:09 PM
python

How to read a dataset in Python: Use Pandas to read into a data table using pd.read_csv(), pd.read_excel(), or pd.read_json(). Use NumPy to read in multidimensional arrays using np.genfromtxt(). Use scikit-learn to load standard datasets using datasets.load_digits() or datasets.load_iris(). Other methods include using Python's csv and json modules, and third-party libraries such as xlrd.

How to read a data set in python

How to read a dataset in Python

In machine learning and data science, reading and processing Datasets are crucial. Python provides a variety of libraries and functions that make this process simple and efficient.

1. Using Pandas

The Pandas library provides powerful methods for reading and manipulating data tables. To read a dataset using Pandas, use the following steps:

import pandas as pd

# 从 CSV 文件读取数据集
df = pd.read_csv('data.csv')

# 从 Excel 文件读取数据集
df = pd.read_excel('data.xlsx')

# 从 JSON 文件读取数据集
df = pd.read_json('data.json')

2. Using NumPy

The NumPy library provides methods for reading and manipulating multidimensional arrays. To read a dataset using NumPy, use the following steps:

import numpy as np

# 从 CSV 文件读取数据集
data = np.genfromtxt('data.csv', delimiter=',')

# 从 Excel 文件读取数据集
data = np.genfromtxt('data.xlsx', delimiter=',', skip_header=1)

3. Using scikit-learn

The scikit-learn library provides various options for reading and loading Convenience method for datasets. To load a dataset using scikit-learn, use the following steps:

from sklearn import datasets

# 加载内置数据集
digits = datasets.load_digits()

# 加载第三方数据集
iris = datasets.load_iris()

4. Other methods

In addition to the above libraries, there are other methods to read data Set, for example:

  • Use the built-in Python csv module (for CSV files)
  • Use the built-in Python json module (for JSON files)
  • Use Third-party libraries such as xlrd (for Excel files)

Choose the appropriate method

Which method to choose to read the data set depends on the data set Format, size and required operations. If you need to work with data tables, Pandas is a good choice. If you need to work with multi-dimensional arrays, NumPy can meet your needs. scikit-learn is great for loading standard datasets.

The above is the detailed content of How to read a data set in python. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python vs. C  : Understanding the Key DifferencesPython vs. C : Understanding the Key DifferencesApr 21, 2025 am 12:18 AM

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Python vs. C  : Which Language to Choose for Your Project?Python vs. C : Which Language to Choose for Your Project?Apr 21, 2025 am 12:17 AM

Choosing Python or C depends on project requirements: 1) If you need rapid development, data processing and prototype design, choose Python; 2) If you need high performance, low latency and close hardware control, choose C.

Reaching Your Python Goals: The Power of 2 Hours DailyReaching Your Python Goals: The Power of 2 Hours DailyApr 20, 2025 am 12:21 AM

By investing 2 hours of Python learning every day, you can effectively improve your programming skills. 1. Learn new knowledge: read documents or watch tutorials. 2. Practice: Write code and complete exercises. 3. Review: Consolidate the content you have learned. 4. Project practice: Apply what you have learned in actual projects. Such a structured learning plan can help you systematically master Python and achieve career goals.

Maximizing 2 Hours: Effective Python Learning StrategiesMaximizing 2 Hours: Effective Python Learning StrategiesApr 20, 2025 am 12:20 AM

Methods to learn Python efficiently within two hours include: 1. Review the basic knowledge and ensure that you are familiar with Python installation and basic syntax; 2. Understand the core concepts of Python, such as variables, lists, functions, etc.; 3. Master basic and advanced usage by using examples; 4. Learn common errors and debugging techniques; 5. Apply performance optimization and best practices, such as using list comprehensions and following the PEP8 style guide.

Choosing Between Python and C  : The Right Language for YouChoosing Between Python and C : The Right Language for YouApr 20, 2025 am 12:20 AM

Python is suitable for beginners and data science, and C is suitable for system programming and game development. 1. Python is simple and easy to use, suitable for data science and web development. 2.C provides high performance and control, suitable for game development and system programming. The choice should be based on project needs and personal interests.

Python vs. C  : A Comparative Analysis of Programming LanguagesPython vs. C : A Comparative Analysis of Programming LanguagesApr 20, 2025 am 12:14 AM

Python is more suitable for data science and rapid development, while C is more suitable for high performance and system programming. 1. Python syntax is concise and easy to learn, suitable for data processing and scientific computing. 2.C has complex syntax but excellent performance and is often used in game development and system programming.

2 Hours a Day: The Potential of Python Learning2 Hours a Day: The Potential of Python LearningApr 20, 2025 am 12:14 AM

It is feasible to invest two hours a day to learn Python. 1. Learn new knowledge: Learn new concepts in one hour, such as lists and dictionaries. 2. Practice and exercises: Use one hour to perform programming exercises, such as writing small programs. Through reasonable planning and perseverance, you can master the core concepts of Python in a short time.

Python vs. C  : Learning Curves and Ease of UsePython vs. C : Learning Curves and Ease of UseApr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.