search
HomeTechnology peripheralsAIHow to use logistics artificial intelligence to achieve intelligent transportation

How to use logistics artificial intelligence to achieve intelligent transportation

Driven by the continuous development of artificial intelligence (AI), the global logistics industry is undergoing a major transformation. Artificial intelligence, defined as the ability of machines to imitate human intelligence, is fundamentally reshaping the logistics landscape. Artificial intelligence is crucial in logistics because of its ability to process large amounts of data, make informed decisions and predict outcomes. Artificial intelligence helps logistics automate and streamline processes, enhance customer experience, and improve the overall efficiency of supply chain systems.

Early adopters of effective implementation of AI supply chain management have made impressive progress. These include a 15% reduction in logistics costs, a 35% optimization of inventory levels and a significant 65% improvement in service levels, outperforming slower-moving competitors. By examining the following specific use cases and analyzing their impact, this article aims to shed light on the exciting future that artificial intelligence brings to the logistics industry.

Demand Forecasting and Inventory Optimization

Artificial intelligence is revolutionizing demand forecasting and inventory optimization by leveraging massive data sets and advanced algorithms. By analyzing large amounts of historical data, including sales data, weather patterns and social media trends, AI algorithms are able to accurately predict demand. Likewise, by analyzing data from customers, suppliers, manufacturers and distributors, AI tools can help businesses optimize inventory levels, minimize stock-outs and reduce costs.

Urban Logistics and Route Optimization

AI-based route planning enables transportation and logistics companies to seamlessly integrate data and analyze traffic, weather, vehicle capacity, etc. in real-time Factors to optimize travel routes. This smart approach reduces fuel consumption and emissions, contributing to a more sustainable future. UPS is a prime example with its Dynamic On-Road Integrated Optimization and Navigation (ORION) technology, which leverages advanced algorithms, AI and machine learning to provide accurate estimated times of arrival (ETA), enhanced reliability and superior responsiveness.

Warehousing and Fulfillment Operations

Industrial intelligence transforms warehouses into automated hubs, where robots equipped with computer vision and machine learning seamlessly navigate complex environments and accurately identify items and speed up picking and packing. This automation increases accuracy, speeds up processes, reduces manual labor, and enables workers to handle more complex tasks. For example, Alibaba’s Cainiao Network uses more than 100 self-charging, Wi-Fi-equipped AGVs to use artificial intelligence to achieve smarter and faster delivery. Additionally, many of their facilities have deployed collaborative robots, promoting human-robot collaboration. Similarly, Amazon’s artificial intelligence “Kiva” system uses a parts-to-picker system that significantly reduces delivery time.

Risk Management

Artificial intelligence analysis can further reduce risks and achieve proactive management. Platforms like DHL monitor millions of online/social media posts, using advanced machine learning and natural language processing to identify impending supply chain disruptions – material shortages, access issues and supplier status changes extracted from online conversations. At the same time, FedEx has adopted "SenseAware", an artificial intelligence-driven system that uses sensors and algorithms to track package conditions (temperature, humidity, etc.) in real time to ensure optimal delivery of sensitive items.

End-to-End Visibility and Transparency

Artificial Intelligence is critical to supply chain transparency, empowering businesses and customers. Real-time shipment updates, powered by an AI platform, give you peace of mind and visibility into your cargo’s journey. Embedded sensors in containers and trucks can track location, status, and environmental factors such as temperature and humidity, enabling proactive problem prediction and product integrity maintenance. This data-driven transparency fosters collaboration and trust among all stakeholders, ultimately improving supply chain efficiency.

Customer Relationship Management

Artificial intelligence can personalize the delivery experience, predict customer preferences, and provide flexible options such as time slots and locations. It also streamlines customer support through AI chatbots and virtual assistants. A case in point is “Marie,” a joint venture between BearingPoint and DHL that uses artificial intelligence to automate chat queries. This reduces customer wait times while saving time for more complex questions.

Road to the Future

With the advancement of technology, such as the emergence of blockchain (BC), data mining (DT) and extended reality (ER), artificial intelligence Innovative applications of intelligence in logistics will flourish. Its strength lies in analyzing complex data, anticipating challenges and coming up with adaptive solutions in different situations. However, human expertise remains critical to solving specific problems, understanding community needs and providing culturally sensitive services.

Thus, combining the data-driven insights of AI with human empathy can optimize the efficiency and effectiveness of the entire logistics sector. Note that the data-intensive nature of AI raises concerns about data privacy and security. Success is addressed through strategic AI integration, promoting human-machine collaboration, and proactively resolving ethical issues. Here, responsible AI adoption can unlock the potential to improve logistics efficiency, sustainability and customer satisfaction. However, responsible AI development and deployment requires a strong data governance framework, so this is a top priority.

The above is the detailed content of How to use logistics artificial intelligence to achieve intelligent transportation. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
2023年机器学习的十大概念和技术2023年机器学习的十大概念和技术Apr 04, 2023 pm 12:30 PM

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

超参数优化比较之网格搜索、随机搜索和贝叶斯优化超参数优化比较之网格搜索、随机搜索和贝叶斯优化Apr 04, 2023 pm 12:05 PM

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠​审校 | 孙淑娟​简介​通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。​顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

人工智能自动获取知识和技能,实现自我完善的过程是什么人工智能自动获取知识和技能,实现自我完善的过程是什么Aug 24, 2022 am 11:57 AM

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

得益于OpenAI技术,微软必应的搜索流量超过谷歌得益于OpenAI技术,微软必应的搜索流量超过谷歌Mar 31, 2023 pm 10:38 PM

截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。 3月23日消息,外媒报道称,分析公司Similarweb的数据显示,在整合了OpenAI的技术后,微软旗下的必应在页面访问量方面实现了更多的增长。​​​​截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。这些数据是微软在与谷歌争夺生

荣耀的人工智能助手叫什么名字荣耀的人工智能助手叫什么名字Sep 06, 2022 pm 03:31 PM

荣耀的人工智能助手叫“YOYO”,也即悠悠;YOYO除了能够实现语音操控等基本功能之外,还拥有智慧视觉、智慧识屏、情景智能、智慧搜索等功能,可以在系统设置页面中的智慧助手里进行相关的设置。

30行Python代码就可以调用ChatGPT API总结论文的主要内容30行Python代码就可以调用ChatGPT API总结论文的主要内容Apr 04, 2023 pm 12:05 PM

阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。 阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。使用 Python 和 C

人工智能在教育领域的应用主要有哪些人工智能在教育领域的应用主要有哪些Dec 14, 2020 pm 05:08 PM

人工智能在教育领域的应用主要有个性化学习、虚拟导师、教育机器人和场景式教育。人工智能在教育领域的应用目前还处于早期探索阶段,但是潜力却是巨大的。

人工智能在生活中的应用有哪些人工智能在生活中的应用有哪些Jul 20, 2022 pm 04:47 PM

人工智能在生活中的应用有:1、虚拟个人助理,使用者可通过声控、文字输入的方式,来完成一些日常生活的小事;2、语音评测,利用云计算技术,将自动口语评测服务放在云端,并开放API接口供客户远程使用;3、无人汽车,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目标;4、天气预测,通过手机GPRS系统,定位到用户所处的位置,在利用算法,对覆盖全国的雷达图进行数据分析并预测。

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Tools

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Atom editor mac version download

Atom editor mac version download

The most popular open source editor