


Python Pandas practical drill, a quick advancement for data processing novices!
- Use
read_csv()
to read the CSV file:df = pd.read_csv("data.csv")
- Handling missing values:
- Remove missing values:
df = df.dropna()
- Fill missing values:
df["column_name"].fillna(value)
- Remove missing values:
- Convert data type:
df["column_name"] = df["column_name"].astype(dtype)
-
Sort and group by:
- Sort:
df.sort_values(by="column_name")
- Group:
groupby_object = df.groupby(by="column_name")
- Sort:
2. Data analysis
- statistics
-
describe()
: View basic statistics of data -
mean()
: Calculate the average value -
std()
: Calculate standard deviation
-
- Draw a chart:
-
plot()
: Generate various chart types, such as line charts and scatter charts -
bar()
:Generate bar chart -
pie()
:Generate pie chart
-
- Data aggregation:
-
agg()
: Apply aggregate function on grouped data -
pivot_table()
: Create a crosstab for summarizing and analyzing data
-
3. Data operation
-
Indices and slices:
-
loc[index_values]
: Get data by index value -
iloc[index_values]
: Get data by index position -
query()
: Filter data by conditions
-
- Data operations:
-
append()
:Append data to DataFrame -
merge()
: Merge two or more DataFrames -
concat()
: Concatenate multiple DataFrames together
-
- Data conversion:
-
apply()
:Apply the function row by row or column by column -
lambda()
: Create an anonymous function to transform data
-
4. Advanced skills
- Custom functions: Create and use custom functions to extend the functionality of pandas
- Vectorization operations: Use NumPy’s vectorization functions to improve efficiency
- Data cleaning:
-
str.strip()
: Remove whitespace characters from string -
str.replace()
: Replace characters in the string or regular expression -
str.lower()
: Convert the string to lowercase
-
5. Case application
- Analyze customer data: Understand customer behavior, purchasing patterns and trends
- Processing financial data: calculating financial indicators, analyzing stock performance
- Exploring scientific data: processing sensor data and analyzing experimental results
The above is the detailed content of Python Pandas practical drill, a quick advancement for data processing novices!. For more information, please follow other related articles on the PHP Chinese website!

ToappendelementstoaPythonlist,usetheappend()methodforsingleelements,extend()formultipleelements,andinsert()forspecificpositions.1)Useappend()foraddingoneelementattheend.2)Useextend()toaddmultipleelementsefficiently.3)Useinsert()toaddanelementataspeci

TocreateaPythonlist,usesquarebrackets[]andseparateitemswithcommas.1)Listsaredynamicandcanholdmixeddatatypes.2)Useappend(),remove(),andslicingformanipulation.3)Listcomprehensionsareefficientforcreatinglists.4)Becautiouswithlistreferences;usecopy()orsl

In the fields of finance, scientific research, medical care and AI, it is crucial to efficiently store and process numerical data. 1) In finance, using memory mapped files and NumPy libraries can significantly improve data processing speed. 2) In the field of scientific research, HDF5 files are optimized for data storage and retrieval. 3) In medical care, database optimization technologies such as indexing and partitioning improve data query performance. 4) In AI, data sharding and distributed training accelerate model training. System performance and scalability can be significantly improved by choosing the right tools and technologies and weighing trade-offs between storage and processing speeds.

Pythonarraysarecreatedusingthearraymodule,notbuilt-inlikelists.1)Importthearraymodule.2)Specifythetypecode,e.g.,'i'forintegers.3)Initializewithvalues.Arraysofferbettermemoryefficiencyforhomogeneousdatabutlessflexibilitythanlists.

In addition to the shebang line, there are many ways to specify a Python interpreter: 1. Use python commands directly from the command line; 2. Use batch files or shell scripts; 3. Use build tools such as Make or CMake; 4. Use task runners such as Invoke. Each method has its advantages and disadvantages, and it is important to choose the method that suits the needs of the project.

ForhandlinglargedatasetsinPython,useNumPyarraysforbetterperformance.1)NumPyarraysarememory-efficientandfasterfornumericaloperations.2)Avoidunnecessarytypeconversions.3)Leveragevectorizationforreducedtimecomplexity.4)Managememoryusagewithefficientdata

InPython,listsusedynamicmemoryallocationwithover-allocation,whileNumPyarraysallocatefixedmemory.1)Listsallocatemorememorythanneededinitially,resizingwhennecessary.2)NumPyarraysallocateexactmemoryforelements,offeringpredictableusagebutlessflexibility.

InPython, YouCansSpectHedatatYPeyFeLeMeReModelerErnSpAnT.1) UsenPyNeRnRump.1) UsenPyNeRp.DLOATP.PLOATM64, Formor PrecisconTrolatatypes.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

Notepad++7.3.1
Easy-to-use and free code editor
