search
HomeBackend DevelopmentPython TutorialPython Pandas practical drill, a quick advancement for data processing novices!

Python Pandas practical drill, a quick advancement for data processing novices!

Mar 20, 2024 pm 10:21 PM
aggregate functionDraw chartsoneData import and processing

Python Pandas 实战演练,数据处理小白的快速进阶!

  1. Use read_csv() to read the CSV file: df = pd.read_csv("data.csv")
  2. Handling missing values:
    • Remove missing values: df = df.dropna()
    • Fill missing values: df["column_name"].fillna(value)
  3. Convert data type: df["column_name"] = df["column_name"].astype(dtype)
  4. Sort and group by:
    • Sort: df.sort_values(by="column_name")
    • Group: groupby_object = df.groupby(by="column_name")

2. Data analysis

  1. statistics
    • describe(): View basic statistics of data
    • mean(): Calculate the average value
    • std(): Calculate standard deviation
  2. Draw a chart:
    • plot(): Generate various chart types, such as line charts and scatter charts
    • bar():Generate bar chart
    • pie():Generate pie chart
  3. Data aggregation:
    • agg(): Apply aggregate function on grouped data
    • pivot_table(): Create a crosstab for summarizing and analyzing data

3. Data operation

  1. Indices and slices:
    • loc[index_values]: Get data by index value
    • iloc[index_values]: Get data by index position
    • query(): Filter data by conditions
  2. Data operations:
    • append():Append data to DataFrame
    • merge(): Merge two or more DataFrames
    • concat(): Concatenate multiple DataFrames together
  3. Data conversion:
    • apply():Apply the function row by row or column by column
    • lambda(): Create an anonymous function to transform data

4. Advanced skills

  1. Custom functions: Create and use custom functions to extend the functionality of pandas
  2. Vectorization operations: Use NumPy’s vectorization functions to improve efficiency
  3. Data cleaning:
    • str.strip(): Remove whitespace characters from string
    • str.replace(): Replace characters in the string or regular expression
    • str.lower(): Convert the string to lowercase

5. Case application

  1. Analyze customer data: Understand customer behavior, purchasing patterns and trends
  2. Processing financial data: calculating financial indicators, analyzing stock performance
  3. Exploring scientific data: processing sensor data and analyzing experimental results

The above is the detailed content of Python Pandas practical drill, a quick advancement for data processing novices!. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:编程网. If there is any infringement, please contact admin@php.cn delete
How do you append elements to a Python list?How do you append elements to a Python list?May 04, 2025 am 12:17 AM

ToappendelementstoaPythonlist,usetheappend()methodforsingleelements,extend()formultipleelements,andinsert()forspecificpositions.1)Useappend()foraddingoneelementattheend.2)Useextend()toaddmultipleelementsefficiently.3)Useinsert()toaddanelementataspeci

How do you create a Python list? Give an example.How do you create a Python list? Give an example.May 04, 2025 am 12:16 AM

TocreateaPythonlist,usesquarebrackets[]andseparateitemswithcommas.1)Listsaredynamicandcanholdmixeddatatypes.2)Useappend(),remove(),andslicingformanipulation.3)Listcomprehensionsareefficientforcreatinglists.4)Becautiouswithlistreferences;usecopy()orsl

Discuss real-world use cases where efficient storage and processing of numerical data are critical.Discuss real-world use cases where efficient storage and processing of numerical data are critical.May 04, 2025 am 12:11 AM

In the fields of finance, scientific research, medical care and AI, it is crucial to efficiently store and process numerical data. 1) In finance, using memory mapped files and NumPy libraries can significantly improve data processing speed. 2) In the field of scientific research, HDF5 files are optimized for data storage and retrieval. 3) In medical care, database optimization technologies such as indexing and partitioning improve data query performance. 4) In AI, data sharding and distributed training accelerate model training. System performance and scalability can be significantly improved by choosing the right tools and technologies and weighing trade-offs between storage and processing speeds.

How do you create a Python array? Give an example.How do you create a Python array? Give an example.May 04, 2025 am 12:10 AM

Pythonarraysarecreatedusingthearraymodule,notbuilt-inlikelists.1)Importthearraymodule.2)Specifythetypecode,e.g.,'i'forintegers.3)Initializewithvalues.Arraysofferbettermemoryefficiencyforhomogeneousdatabutlessflexibilitythanlists.

What are some alternatives to using a shebang line to specify the Python interpreter?What are some alternatives to using a shebang line to specify the Python interpreter?May 04, 2025 am 12:07 AM

In addition to the shebang line, there are many ways to specify a Python interpreter: 1. Use python commands directly from the command line; 2. Use batch files or shell scripts; 3. Use build tools such as Make or CMake; 4. Use task runners such as Invoke. Each method has its advantages and disadvantages, and it is important to choose the method that suits the needs of the project.

How does the choice between lists and arrays impact the overall performance of a Python application dealing with large datasets?How does the choice between lists and arrays impact the overall performance of a Python application dealing with large datasets?May 03, 2025 am 12:11 AM

ForhandlinglargedatasetsinPython,useNumPyarraysforbetterperformance.1)NumPyarraysarememory-efficientandfasterfornumericaloperations.2)Avoidunnecessarytypeconversions.3)Leveragevectorizationforreducedtimecomplexity.4)Managememoryusagewithefficientdata

Explain how memory is allocated for lists versus arrays in Python.Explain how memory is allocated for lists versus arrays in Python.May 03, 2025 am 12:10 AM

InPython,listsusedynamicmemoryallocationwithover-allocation,whileNumPyarraysallocatefixedmemory.1)Listsallocatemorememorythanneededinitially,resizingwhennecessary.2)NumPyarraysallocateexactmemoryforelements,offeringpredictableusagebutlessflexibility.

How do you specify the data type of elements in a Python array?How do you specify the data type of elements in a Python array?May 03, 2025 am 12:06 AM

InPython, YouCansSpectHedatatYPeyFeLeMeReModelerErnSpAnT.1) UsenPyNeRnRump.1) UsenPyNeRp.DLOATP.PLOATM64, Formor PrecisconTrolatatypes.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor