Home >Backend Development >Python Tutorial >Python Pandas practical drill, a quick advancement for data processing novices!

Python Pandas practical drill, a quick advancement for data processing novices!

王林
王林forward
2024-03-20 22:21:14728browse

Python Pandas 实战演练,数据处理小白的快速进阶!

  1. Use read_csv() to read the CSV file: df = pd.read_csv("data.csv")
  2. Handling missing values:
    • Remove missing values: df = df.dropna()
    • Fill missing values: df["column_name"].fillna(value)
  3. Convert data type: df["column_name"] = df["column_name"].astype(dtype)
  4. Sort and group by:
    • Sort: df.sort_values(by="column_name")
    • Group: groupby_object = df.groupby(by="column_name")

2. Data analysis

  1. statistics
    • describe(): View basic statistics of data
    • mean(): Calculate the average value
    • std(): Calculate standard deviation
  2. Draw a chart:
    • plot(): Generate various chart types, such as line charts and scatter charts
    • bar():Generate bar chart
    • pie():Generate pie chart
  3. Data aggregation:
    • agg(): Apply aggregate function on grouped data
    • pivot_table(): Create a crosstab for summarizing and analyzing data

3. Data operation

  1. Indices and slices:
    • loc[index_values]: Get data by index value
    • iloc[index_values]: Get data by index position
    • query(): Filter data by conditions
  2. Data operations:
    • append():Append data to DataFrame
    • merge(): Merge two or more DataFrames
    • concat(): Concatenate multiple DataFrames together
  3. Data conversion:
    • apply():Apply the function row by row or column by column
    • lambda(): Create an anonymous function to transform data

4. Advanced skills

  1. Custom functions: Create and use custom functions to extend the functionality of pandas
  2. Vectorization operations: Use NumPy’s vectorization functions to improve efficiency
  3. Data cleaning:
    • str.strip(): Remove whitespace characters from string
    • str.replace(): Replace characters in the string or regular expression
    • str.lower(): Convert the string to lowercase

5. Case application

  1. Analyze customer data: Understand customer behavior, purchasing patterns and trends
  2. Processing financial data: calculating financial indicators, analyzing stock performance
  3. Exploring scientific data: processing sensor data and analyzing experimental results

The above is the detailed content of Python Pandas practical drill, a quick advancement for data processing novices!. For more information, please follow other related articles on the PHP Chinese website!

Statement:
This article is reproduced at:lsjlt.com. If there is any infringement, please contact admin@php.cn delete