


fork() is a very important system call in Linux and other Unix-like systems. It is used to create a new process. This new process is a copy of the current process, called a child process. The child process will obtain a copy of the parent process's code, data, heap, stack, etc., but the two processes will have different process IDs and some other resources, such as open file descriptors.
The following is the basic usage and precautions of the fork() function:
Function prototype
c
#include <unistd.h> pid_t fork(void);
Return value
If fork() is successfully called in the parent process, the process ID of the newly created child process is returned.
If fork() is successfully called in the child process, 0 is returned.
If the fork() call fails, -1 is returned.
Features
Parent-child process: The process calling fork() is the parent process, and the newly created process is the child process.
Data copy: The data of the parent process (including code, heap, stack, etc.) will be copied to the child process, but the two processes have independent address spaces.
Asynchronicity: After fork() creates a child process, the parent process and the child process execute in an asynchronous manner, and they can run independently of each other.
Process ID: Each process has a unique process ID (PID), and the PID of the child process is different from the PID of the parent process.
Example
c
#include <stdio.h> #include <stdlib.h> #include <unistd.h> int main() { pid_t pid; pid = fork(); if (pid < 0) { // fork 失败 fprintf(stderr, "Fork failed\n"); exit(1); } else if (pid == 0) { // 子进程 printf("I am the child process, my PID is %d\n", getpid()); } else { // 父进程 printf("I am the parent process, my PID is %d, my child's PID is %d\n", getpid(), pid); } return 0; }
Note
Resource copying: fork() will copy all resources of the parent process, which may cause performance issues, especially in in large programs. Therefore, it is usually recommended to use the exec() series of functions to replace the code of the child process after fork() to avoid unnecessary resource copying.
Race conditions: Because the parent process and the child process execute asynchronously, race conditions may occur. For example, two processes might try to access or modify the same file at the same time, resulting in inconsistent data.
Error handling: After calling fork(), its return value should always be checked to handle possible error conditions.
In general, fork() is a very basic and important system call in the Linux system, used to create new processes. However, due to its complexity and potential performance issues, extreme caution is required when using it.
The above is the detailed content of Detailed explanation of fork function in Linux. For more information, please follow other related articles on the PHP Chinese website!

MaintenanceModeinLinuxisaspecialbootenvironmentforcriticalsystemmaintenancetasks.Itallowsadministratorstoperformtaskslikeresettingpasswords,repairingfilesystems,andrecoveringfrombootfailuresinaminimalenvironment.ToenterMaintenanceMode,interrupttheboo

The core components of Linux include kernel, file system, shell, user and kernel space, device drivers, and performance optimization and best practices. 1) The kernel is the core of the system, managing hardware, memory and processes. 2) The file system organizes data and supports multiple types such as ext4, Btrfs and XFS. 3) Shell is the command center for users to interact with the system and supports scripting. 4) Separate user space from kernel space to ensure system stability. 5) The device driver connects the hardware to the operating system. 6) Performance optimization includes tuning system configuration and following best practices.

The five basic components of the Linux system are: 1. Kernel, 2. System library, 3. System utilities, 4. Graphical user interface, 5. Applications. The kernel manages hardware resources, the system library provides precompiled functions, system utilities are used for system management, the GUI provides visual interaction, and applications use these components to implement functions.

Linux maintenance mode can be entered through the GRUB menu. The specific steps are: 1) Select the kernel in the GRUB menu and press 'e' to edit, 2) Add 'single' or '1' at the end of the 'linux' line, 3) Press Ctrl X to start. Maintenance mode provides a secure environment for tasks such as system repair, password reset and system upgrade.

The steps to enter Linux recovery mode are: 1. Restart the system and press the specific key to enter the GRUB menu; 2. Select the option with (recoverymode); 3. Select the operation in the recovery mode menu, such as fsck or root. Recovery mode allows you to start the system in single-user mode, perform file system checks and repairs, edit configuration files, and other operations to help solve system problems.

The core components of Linux include the kernel, file system, shell and common tools. 1. The kernel manages hardware resources and provides basic services. 2. The file system organizes and stores data. 3. Shell is the interface for users to interact with the system. 4. Common tools help complete daily tasks.

The basic structure of Linux includes the kernel, file system, and shell. 1) Kernel management hardware resources and use uname-r to view the version. 2) The EXT4 file system supports large files and logs and is created using mkfs.ext4. 3) Shell provides command line interaction such as Bash, and lists files using ls-l.

The key steps in Linux system management and maintenance include: 1) Master the basic knowledge, such as file system structure and user management; 2) Carry out system monitoring and resource management, use top, htop and other tools; 3) Use system logs to troubleshoot, use journalctl and other tools; 4) Write automated scripts and task scheduling, use cron tools; 5) implement security management and protection, configure firewalls through iptables; 6) Carry out performance optimization and best practices, adjust kernel parameters and develop good habits.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.