search
HomeTechnology peripheralsAIWith reference to the human brain, will learning to forget make large AI models better?

With reference to the human brain, will learning to forget make large AI models better?

Recently, a team of computer scientists developed a more flexible and resilient machine learning model with the ability to periodically forget known information. Features that existing large language models do not have.

Actual testing shows that in many cases, the "forgetting method" is very efficient in training, and the forgetting model will perform better. Jea Kwon, a AI engineer at the Institute for Basic Science in Korea, said the new research represents significant progress in the AI field.

The "forgetting method" training efficiency is very high

Most of the current mainstream AI language engines use artificial neural network technology. Each "neuron" in this network structure is actually a mathematical function. They are connected to each other, receive and transmit information, and realize data processing and learning through complex operations of multiple layers of neurons. This simulation method of neural networks enables AI to simulate the working way of the human brain, thereby achieving human-like intelligent behavior.

In the beginning, the information flow is more or less random. As the network continues to match the training data, the information flowing between neurons will continue to optimize. For example, if a researcher wants to train a bilingual translation model, it first collects massive amounts of bilingual text and uses the text to train the model. It adjusts the connections between neurons to compare the text in one language with the equivalent text in another language. Connect effective words.

The above training requires a lot of computing resources. If the model performs poorly, or user needs change, the model may not be able to meet the needs.

Researcher Mikel Artetxe pointed out: "Suppose you have a model that contains 100 languages, but one language is not included. If you want to add this language to the model, you must retrain. ”

A few years ago, Artetxe and his colleagues trained a neural network on a language, and they erased the word composition information known to the neural network, which is called “Tokens”. Tokens are stored in the first layer of the neural network, which is also called the "embedding layer". For other layers, ignore them. After erasing the Tokens of the first language and training in the second language, new Tokens of the second language can be filled into the embedding layer.

Although the model contains a large amount of mismatched information, it can still be retrained in the second language, which means that the model can learn and process the second language. The researchers believe that although the embedding layer stores vocabulary-specific information of the second language, the neural network stores abstract information at the lower level, which involves the behind-the-scenes concepts of human language. It is these concepts that help the model learn the second language.

Chen Yihong, author of the research report, believes: "We live in the same world and use words in different languages ​​to express the same concepts. Therefore, there will be the same level of reasoning in the model, such as an apple, which is sweet It's delicious, it represents more than just one word."

Adding new languages ​​to the trained model, using the "forgetting method" is very efficient. However, it still needs to be retrained, and it still requires massive amounts of data. data and powerful processing power. Is there a better way? Of course, there is no need to train, just erase the embedding layer and then train again, that is, periodically reset the embedding layer during the initial training.

Artetxe said: "In this way, the entire model can adapt to the reset. If you want to extend the model and adapt it to another language, the process will become easier."

Forgetting models perform better

The researchers experimented with Roberta, a relatively general large language model, trained using periodic forgetting techniques, and compared it with models trained using standard, non-forgetting methods. The results showed that when processing the first language, the forgetting model scored 85.1 points and the traditional standard model scored 86.1 points. When training in the second language, using only about 5 million Tokens (70 billion were used in the first language), the accuracy score of the forgetting model dropped to 62.7 points, and the standard model dropped to 53.3 points.

If researchers impose computational constraints when retraining, forgetful models will perform better. For example, when the researchers shortened the training length from 125,000 steps to 5,000 steps, the average score of the unlearning model was about 57.8 points, and the standard model dropped to 37.2 points, almost guessing.

So the researchers concluded that the forgetting model performed better when learning language.

Evgenii Nikishin, a researcher at Quebec's deep learning research center Mila, said: "Because the model is constantly unlearning and then relearning during training, it will be easier to teach the network something new later." There are indications that the model will look at a deeper level when understanding language, not just understanding the meaning of individual words.

The forgetting method is somewhat similar to the operating mode of the human brain. Benjamin Levy, a neuroscientist at the University of San Francisco, believes: "Human memory is quite imprecise when storing large amounts of detailed information. But the human brain can remember the key points of experience, remember abstract information, and is good at inferring. Let AI process information like humans, such as letting It has the ability to forget, and AI may be more flexible."

Yihong Chen believes that factories manufacturing language models may appear in the future. Such factories require forgetting technology. It is a basic model that can be quickly adapted. New Field. (Knife)

The above is the detailed content of With reference to the human brain, will learning to forget make large AI models better?. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
2023年机器学习的十大概念和技术2023年机器学习的十大概念和技术Apr 04, 2023 pm 12:30 PM

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

人工智能自动获取知识和技能,实现自我完善的过程是什么人工智能自动获取知识和技能,实现自我完善的过程是什么Aug 24, 2022 am 11:57 AM

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

超参数优化比较之网格搜索、随机搜索和贝叶斯优化超参数优化比较之网格搜索、随机搜索和贝叶斯优化Apr 04, 2023 pm 12:05 PM

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠​审校 | 孙淑娟​简介​通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。​顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

得益于OpenAI技术,微软必应的搜索流量超过谷歌得益于OpenAI技术,微软必应的搜索流量超过谷歌Mar 31, 2023 pm 10:38 PM

截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。 3月23日消息,外媒报道称,分析公司Similarweb的数据显示,在整合了OpenAI的技术后,微软旗下的必应在页面访问量方面实现了更多的增长。​​​​截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。这些数据是微软在与谷歌争夺生

荣耀的人工智能助手叫什么名字荣耀的人工智能助手叫什么名字Sep 06, 2022 pm 03:31 PM

荣耀的人工智能助手叫“YOYO”,也即悠悠;YOYO除了能够实现语音操控等基本功能之外,还拥有智慧视觉、智慧识屏、情景智能、智慧搜索等功能,可以在系统设置页面中的智慧助手里进行相关的设置。

30行Python代码就可以调用ChatGPT API总结论文的主要内容30行Python代码就可以调用ChatGPT API总结论文的主要内容Apr 04, 2023 pm 12:05 PM

阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。 阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。使用 Python 和 C

人工智能在教育领域的应用主要有哪些人工智能在教育领域的应用主要有哪些Dec 14, 2020 pm 05:08 PM

人工智能在教育领域的应用主要有个性化学习、虚拟导师、教育机器人和场景式教育。人工智能在教育领域的应用目前还处于早期探索阶段,但是潜力却是巨大的。

人工智能在生活中的应用有哪些人工智能在生活中的应用有哪些Jul 20, 2022 pm 04:47 PM

人工智能在生活中的应用有:1、虚拟个人助理,使用者可通过声控、文字输入的方式,来完成一些日常生活的小事;2、语音评测,利用云计算技术,将自动口语评测服务放在云端,并开放API接口供客户远程使用;3、无人汽车,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目标;4、天气预测,通过手机GPRS系统,定位到用户所处的位置,在利用算法,对覆盖全国的雷达图进行数据分析并预测。

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),