To scale generative AI implementations, there needs to be a balance between accelerating adoption and maintaining control of critical assets. Taking a modular approach to building generative AI agents can make this process easier because it breaks down the implementation process and avoids potential bottlenecks.
Similar to the application of microservices design in applications, a modular approach to AI services also encourages best practices around application and software design, eliminating points of failure and enabling more Multiple potential users have access to this technology. This approach also makes it easier to monitor the performance of AI agents across the enterprise, pinpointing more precisely where problems occur.
The first benefit of modularity is interpretability, because the components involved in a generative AI system are separated from each other, making it easier to analyze how the agent operates and makes decisions. . AI is often viewed as a "black box," and modularity makes it easier to track and interpret results.
The second benefit is security, as individual components can be protected with optimal authentication and authorization mechanisms, ensuring that only authorized users can access sensitive data and functionality. Modularity also makes compliance and governance easier, as personally identifiable information (PII) or intellectual property (IP) can be secured and kept separate from the underlying LLM.
4. Provide a continuously flexible funding model
In addition to adopting a microservices approach, a platform mindset should be adopted in overall generative AI projects. This means replacing the traditional project-based software project funding model with one that provides an ongoing and flexible funding model. This approach empowers participants to make value-based decisions, respond to emerging opportunities, and develop best practices without being constrained by rigid funding cycles or business cases.
Managing budgets in this way also encourages developers and business teams to consider generative AI as part of the organization’s already existing infrastructure, making it easier to smooth out spikes in planning workloads and troughs, it’s easier to take a “center of excellence” approach and maintain consistency over the long term.
A similar approach is to regard generative AI as a product operated by the enterprise itself, rather than as pure software. AI agents should be managed as products, as this more effectively reflects the value they create and makes support resources for integrations, tools, and tips more readily available. Simplifying this model helps spread understanding of generative AI across the organization, promotes the adoption of best practices, and creates a culture of shared expertise and collaboration in generative AI development.
Generative AI has huge potential, and companies are racing to implement new tools, agents, and cues into their operations. However, moving these potential projects into production requires effective management of data, a foundation for scaling the system, and a budget model in place to support the team. Getting your processes right and prioritizing will help you and your team unlock the transformative potential of this technology.
Reference address: https://www.infoworld.com/article/3713461/how-to-manage-generative-ai.html
The above is the detailed content of How to manage generative AI. For more information, please follow other related articles on the PHP Chinese website!

The unchecked internal deployment of advanced AI systems poses significant risks, according to a new report from Apollo Research. This lack of oversight, prevalent among major AI firms, allows for potential catastrophic outcomes, ranging from uncont

Traditional lie detectors are outdated. Relying on the pointer connected by the wristband, a lie detector that prints out the subject's vital signs and physical reactions is not accurate in identifying lies. This is why lie detection results are not usually adopted by the court, although it has led to many innocent people being jailed. In contrast, artificial intelligence is a powerful data engine, and its working principle is to observe all aspects. This means that scientists can apply artificial intelligence to applications seeking truth through a variety of ways. One approach is to analyze the vital sign responses of the person being interrogated like a lie detector, but with a more detailed and precise comparative analysis. Another approach is to use linguistic markup to analyze what people actually say and use logic and reasoning. As the saying goes, one lie breeds another lie, and eventually

The aerospace industry, a pioneer of innovation, is leveraging AI to tackle its most intricate challenges. Modern aviation's increasing complexity necessitates AI's automation and real-time intelligence capabilities for enhanced safety, reduced oper

The rapid development of robotics has brought us a fascinating case study. The N2 robot from Noetix weighs over 40 pounds and is 3 feet tall and is said to be able to backflip. Unitree's G1 robot weighs about twice the size of the N2 and is about 4 feet tall. There are also many smaller humanoid robots participating in the competition, and there is even a robot that is driven forward by a fan. Data interpretation The half marathon attracted more than 12,000 spectators, but only 21 humanoid robots participated. Although the government pointed out that the participating robots conducted "intensive training" before the competition, not all robots completed the entire competition. Champion - Tiangong Ult developed by Beijing Humanoid Robot Innovation Center

Artificial intelligence, in its current form, isn't truly intelligent; it's adept at mimicking and refining existing data. We're not creating artificial intelligence, but rather artificial inference—machines that process information, while humans su

A report found that an updated interface was hidden in the code for Google Photos Android version 7.26, and each time you view a photo, a row of newly detected face thumbnails are displayed at the bottom of the screen. The new facial thumbnails are missing name tags, so I suspect you need to click on them individually to see more information about each detected person. For now, this feature provides no information other than those people that Google Photos has found in your images. This feature is not available yet, so we don't know how Google will use it accurately. Google can use thumbnails to speed up finding more photos of selected people, or may be used for other purposes, such as selecting the individual to edit. Let's wait and see. As for now

Reinforcement finetuning has shaken up AI development by teaching models to adjust based on human feedback. It blends supervised learning foundations with reward-based updates to make them safer, more accurate, and genuinely help

Scientists have extensively studied human and simpler neural networks (like those in C. elegans) to understand their functionality. However, a crucial question arises: how do we adapt our own neural networks to work effectively alongside novel AI s


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

WebStorm Mac version
Useful JavaScript development tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

SublimeText3 Chinese version
Chinese version, very easy to use

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool
