background Data has penetrated into every aspect of our lives, from smart sensors to huge big data libraries. Extracting useful information from this data has become critical to help us make informed decisions, improve operational efficiency and create innovative insights. Programming languages (eg: python) using libraries such as pandas, NumPy etc. play a key role.
Data Extraction BasicsThe first step in data extraction is to load the data from the data source into a storage structure. Pandas's read_csv() method allows loading data from a CSV file, while the read_sql() method is used to get data from a connected database. The loaded data can then be cleaned and transformed to make it suitable for further exploration and modeling.
Data ExplorationOnce the data is loaded, you can use Pandas' data frames and data structures to explore the data. The .info() method provides information about data types, missing values, and memory usage. The .head() method is used to preview the first few rows of data, while the .tail() method displays the last row of data.
Data CleaningData cleaning is a basic but important part of optimizing data quality by removing incorrect, missing or duplicate entries. For example, use the .dropna() method to drop rows with missing values, and the .drop_duplicates() method to select only unique rows.
Data conversionData transformation involves converting data from one structure to another for modeling purposes. Pandas' data frames provide methods to reshape the data, such as .stack() for converting from a wide table to a long table, and .unstack() for reversing the conversion.
Data aggregationData aggregation summarizes the values of multiple observations into a single value. Pandas's .groupby() method is used to group data based on a specified grouping key, while the .agg() method is used to calculate summary statistics (such as mean, median, standard deviation) for each group
data visualizationData visualization is the conversion of complex data into a graphical representation, making it easy to interpret and communicate. The Matplot library provides built-in methods for generating bar charts, histograms, scatter plots, and line charts.
Machine languageMachine language models, such as decision trees and classifiers in Scikit-Learn, can be used to derive knowledge from data. They can help with classification, regression, and clustering of data. The trained model can then be used to reason about new data and make real-world decisions.
Case Study: Retail Store DataConsider the sales data of a retail store, including transaction date, time, product category, sales volume and store number.
import numpy as np import matplotlib.pyplot as pyplot import seaborn as sns # 加载数据 data = data.read_csv("store_data.csv") # 探索 print(data.info()) print(data.head()) # 数据清洗 data.dropna(inplace=True) # 转换 # 将商店编号设置为行标签 data.set_index("store_no", inplace=True) # 聚合 # 按商店分组并计算每组的每月总销售额 monthly_totals = data.groupby("month").resample("M").sum() # 数据可视化 # 生成每月总销售额的折线图 pyplot.figure(figxize=(10,6)) monthly_totals.plot(kind="line")in conclusion
Using
PythonData extraction is an essential skill in various industries and functions. By following the best practices outlined in this article, data scientists, data engineers, and business professionals can extract useful information from their data, driving informed decisions and operational excellence.
The above is the detailed content of Python Data Analysis: Extracting Value from Data. For more information, please follow other related articles on the PHP Chinese website!

继上次盘点《数据科学家95%的时间都在使用的11个基本图表》之后,今天将为大家带来数据科学家95%的时间都在使用的11个基本分布。掌握这些分布,有助于我们更深入地理解数据的本质,并在数据分析和决策过程中做出更准确的推断和预测。1.正态分布正态分布(NormalDistribution),也被称为高斯分布(GaussianDistribution),是一种连续型概率分布。它具有一个对称的钟形曲线,以均值(μ)为中心,标准差(σ)为宽度。正态分布在统计学、概率论、工程学等多个领域具有重要的应用价值。

区别:1、“数据分析”得出的结论是人的智力活动结果,而“数据挖掘”得出的结论是机器从学习集【或训练集、样本集】发现的知识规则;2、“数据分析”不能建立数学模型,需要人工建模,而“数据挖掘”直接完成了数学建模。

1.Python与机器学习的邂逅python作为一种简单易学、功能强大的编程语言,深受广大开发者的喜爱。而机器学习作为人工智能的一个分支,旨在让计算机学会如何从数据中学习并做出预测或决策。Python与机器学习的结合,可谓是珠联璧合,为我们带来了一系列强大的工具和库,使得机器学习变得更加容易实现和应用。2.Python机器学习库探秘Python中提供了众多功能丰富的机器学习库,其中最受欢迎的包括:NumPy:提供了高效的数值计算功能,是机器学习的基础库。SciPy:提供了更高级的科学计算工具,是

在使用BI工具的时候,经常遇到的问题是:“不会SQL怎么生产加工数据、不会算法可不可以做挖掘分析?”而专业算法团队在做数据挖掘时,数据分析及可视化也会呈现相对割裂的现象。流程化完成算法建模和数据分析工作,也是一个提效的好办法。同时,对于专业数仓团队来说,相同主题的数据内容面临“重复建设,使用和管理时相对分散”的问题——究竟有没有办法在一个任务里同时生产,同主题不同内容的数据集?生产的数据集可不可以作为输入重新参与数据建设?1.DataWind可视化建模能力来了由火山引擎推出的BI平台Da

在当今快速发展的科技时代,各种编程语言的应用范围日益广泛,其中Go语言作为一种高效、简洁、易于学习和使用的编程语言,受到越来越多企业和开发者的青睐。Go语言(也称为Golang)是由Google开发的一种编程语言,它强调简洁、高效和并发编程,适用于各种应用场景。那么,哪些行业对Go语言的需求较大呢?接下来将分析一些主要行业,并探讨它们对Go语言的需求。互联网

ApacheToree是一个开源的JupyterKernel,它提供了一个通用的接口来在不同的语言中进行算法开发和数据科学研究,包括Python,R,Scala和Java等。在中小型的项目和团队中,PHP通常是首选的Web编程语言。但在数据分析和科学方面,PHP的选项相对较少,此时,ApacheToree的出现解决了这一问题。本文将介绍如何

在数字时代,数据已成为新的货币。全球各地的组织正在转向机器学习和数据科学,以挖掘其巨大潜力。机器学习和数据科学正在重塑众多行业,实现更明智的决策,改善客户体验,并将创新推向前所未有的高度。机器学习和数据科学的融合正在重塑行业,重新定义业务战略,并推动我们进入数据驱动的未来。拥抱这些变革性技术,同时牢记道德考虑,不仅仅是一种选择,对于希望在数字时代的动态格局中蓬勃发展的企业而言,这是必要的。本文将深入探讨了机器学习和数据科学的非凡影响,揭示了它们如何重塑商业格局,并为数据驱动的见解推动的未来打开大

在数据科学和机器学习领域,许多模型都假设数据呈现正态分布,或者假设数据在正态分布下表现更好。例如,线性回归假设残差呈正态分布,线性判别分析(LDA)基于正态分布等假设进行推导。因此,了解如何测试数据正态性的方法对于数据科学家和机器学习从业者至关重要本篇文章旨在介绍11种基本方法来测试数据的正态性,以帮助读者更好地了解数据分布的特征,并学会如何应用适当的方法进行分析。这样可以更好地处理数据分布对模型性能的影响,在机器学习和数据建模过程中更加得心应手绘图法PlottingMethods1.QQPlo


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SublimeText3 Chinese version
Chinese version, very easy to use
