


Analyze the influencing factors of JVM memory allocation strategy and related memory parameters
JVM memory parameter settings: To explore the influencing factors of JVM memory allocation strategy, specific code examples are needed
1. Introduction
JVM (Java Virtual Machine ), as the running environment for executing Java programs, plays a vital role in memory management. Properly configuring the memory parameters of the JVM can improve the performance and efficiency of the program. This article will explore the influencing factors of JVM memory parameter settings from the perspective of memory allocation strategy, and give specific code examples.
2. Introduction to memory allocation strategy
JVM memory is divided into two parts: heap and non-heap. Among them, heap memory mainly stores object instances, while non-heap memory stores metadata information and method areas of classes. The allocation strategies adopted by the JVM when allocating memory mainly include the following:
- Objects are allocated first in the Eden area. The memory is divided into multiple young generations and an old generation. The young generation is divided into an Eden area and two Survivor areas (usually a From area and a To area). Most of the newly created objects will be allocated to the Eden area. When the Eden area is full, Minor GC is triggered and the surviving objects are copied to the Survivor area.
- Large objects enter the old generation directly. If the size of an object exceeds the value set by the PretenureSizeThreshold parameter, the JVM will allocate it directly to the old generation to avoid multiple copies between the Eden area and the Survivor area.
- Long-term surviving objects enter the old generation. By setting the MaxTenuringThreshold parameter, you can control how many times an object passes through Minor GC in the Survivor area before it can be promoted to an object in the old generation.
3. Influencing factors and specific code examples
- Heap memory size (Xmx and Xms parameters)
The setting of heap memory size will Directly affects program performance and throughput. If the heap memory setting is too small, it will cause frequent GC and reduce the execution efficiency of the program; if the heap memory setting is too large, it may cause a waste of memory resources. It is generally recommended to set the Xmx and Xms parameters to the same value to avoid additional processing during GC.
Sample code:
java -Xmx512m -Xms512m MainClass
- Young generation size (Xmn parameter)
The young generation size setting will affect the trigger frequency and execution of Minor GC efficiency. The size of the young generation is generally recommended to occupy 1/3 to 1/4 of the entire heap memory. A young generation that is too small will trigger frequent Minor GC, while a young generation that is too large may cause the execution time of each Minor GC to be too long.
Sample code:
java -Xmn256m MainClass
- Survivor area ratio (SurvivorRatio parameter)
The Survivor area is the area where young generation surviving objects are stored. The SurvivorRatio parameter is used to set the ratio of the Eden area and the Survivor area. The default value is 8, that is, the size ratio of the Eden area and the Survivor area is 8:1. Properly setting the SurvivorRatio parameter can make the memory space ratio of the young generation more reasonable.
Sample code:
java -XX:SurvivorRatio=8 MainClass
- Direct memory size (XX:MaxDirectMemorySize parameter)
Direct memory is called through Native when using the NIO library to operate allocated memory space. Direct memory that is too small may cause an OutOfMemoryError exception, while direct memory that is too large may cause a waste of memory resources.
Sample code:
java -XX:MaxDirectMemorySize=256m MainClass
4. Summary
This article starts from the influencing factors of memory allocation strategy and gives a code example for JVM memory parameter setting. Properly configuring the memory parameters of the JVM can improve the performance and efficiency of the program. However, it should be noted that the configuration of JVM memory parameters needs to be adjusted according to specific application scenarios and hardware environments. There is no fixed optimal setting. Therefore, when setting JVM memory parameters, comprehensive consideration and experimental verification are required based on the actual situation in order to achieve the best performance.
The above is the detailed content of Analyze the influencing factors of JVM memory allocation strategy and related memory parameters. For more information, please follow other related articles on the PHP Chinese website!

Cloud computing significantly improves Java's platform independence. 1) Java code is compiled into bytecode and executed by the JVM on different operating systems to ensure cross-platform operation. 2) Use Docker and Kubernetes to deploy Java applications to improve portability and scalability.

Java'splatformindependenceallowsdeveloperstowritecodeonceandrunitonanydeviceorOSwithaJVM.Thisisachievedthroughcompilingtobytecode,whichtheJVMinterpretsorcompilesatruntime.ThisfeaturehassignificantlyboostedJava'sadoptionduetocross-platformdeployment,s

Containerization technologies such as Docker enhance rather than replace Java's platform independence. 1) Ensure consistency across environments, 2) Manage dependencies, including specific JVM versions, 3) Simplify the deployment process to make Java applications more adaptable and manageable.

JRE is the environment in which Java applications run, and its function is to enable Java programs to run on different operating systems without recompiling. The working principle of JRE includes JVM executing bytecode, class library provides predefined classes and methods, configuration files and resource files to set up the running environment.

JVM ensures efficient Java programs run through automatic memory management and garbage collection. 1) Memory allocation: Allocate memory in the heap for new objects. 2) Reference count: Track object references and detect garbage. 3) Garbage recycling: Use the tag-clear, tag-tidy or copy algorithm to recycle objects that are no longer referenced.

Start Spring using IntelliJIDEAUltimate version...

When using MyBatis-Plus or other ORM frameworks for database operations, it is often necessary to construct query conditions based on the attribute name of the entity class. If you manually every time...

Java...


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

SublimeText3 English version
Recommended: Win version, supports code prompts!

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.