bitsCN.com
第一部分 棉花数据库问题和分析
1.问题sql
数据库的版本是9i,问题sql有两个:
Sql1:
SELECT c_lotno FROM b_ctn_normal WHERE d_prodatetime BETWEEN to_date('2011-07-01', 'yyyy-mm-dd HH24:MI:SS') AND to_date('2012-07-03', 'yyyy-mm-dd HH24:MI:SS') AND n_madein = 65 AND rownum |
Sql2:
SELECT count(c_bale) FROM b_ctn_normal WHERE d_prodatetime BETWEEN to_date('2011-07-01', 'yyyy-mm-dd HH24:MI:SS') AND to_date('2012-07-03', 'yyyy-mm-dd HH24:MI:SS') |
这俩sql其实非常简单,就是一个按照时间的分页查询,一个查询时间范围内的总数据量。
但是这个表的数据量很大,41803656条数据,单表容量超过21G。因此查询非常慢,仅仅查询30条数据就需要耗费十几分钟。甚至查不出结果。
2 表概况
表b_ctn_normal是一个分区表,按照D_VERIFYDATETIME进行了range分区,分区的策略为2010年前每年一个分区,2010年后每月一个分区.该表的数据量为41803656条。
partition by range (D_VERIFYDATETIME) partition PART_20080101 values less than (TO_DATE(' 2008-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS', 'NLS_CALENDAR=GREGORIAN')) partition PART_20090101 values less than (TO_DATE(' 2009-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS', 'NLS_CALENDAR=GREGORIAN'))—后续的省略
|
另外该表上建了大量的索引,见表1:
3.表存在的问题
以下是索引的概况统计信息。
NDEX_NAME |
DISTINCT_KEYS |
NUM_ROWS |
SAMPLE_SIZE |
I_CTN_NORMAL_99 |
4 |
41805079.0630631 |
8459008 |
I_NORMAL_MADEIN1 |
17 |
41804897.3546108 |
9544621 |
I_CTN_NORMAL_66 |
80 |
41767143.7096454 |
9580744 |
I_CTN_NORMAL_77 |
86 |
41473125.0963043 |
9479665 |
I_CTN_NORMAL_22 |
366 |
41875654.4438373 |
9937607 |
I_CTN_NORMAL_11 |
889 |
41867424.9314059 |
11007070 |
I_CTN_NORMAL_55 |
1957 |
40169648.695544 |
9058949 |
I_NORMAL_UPLOADTIME1 |
17253 |
41866396.7193889 |
10087608 |
I_CTN_NORMAL_33 |
384472 |
41842227.8696896 |
10621842 |
I_NORMAL_D_COLORGRADETIME |
1485863 |
41727490.2734861 |
9119757 |
GLOBAL_INDEX_D_VERIFYDATETIME |
21162573 |
41804256 |
9592128 |
PRIMARY1_ID |
41804473 |
41804473 |
9540784 |
UNI_NORMAL_C_BALE1 |
41841809 |
41841809.1781587 |
7023237 |
【表1】索引概况
l 表不是很宽,但是竟然建了13个索引,而且8个索引可选性很差,每个索引都占据不少段空间,极大的浪费了存储空间。
l 索引没有分区,千万级别的数据量,本身查找索引就很耗时,因此应当对索引分区其高索引检索性能。
l 表的索引和表应该建立在不同的表空间分开存放,同时表的分区在不同的表空间存放。
l 分区的记录不均匀,分区不合理
分区的统计信息显示,大量的数据集中在了PART_20100101和PART_20090101分区,分区很不合理,大大削弱了分区表的作用。应该对分区进行细粒度的划分,均匀分布数据。
TABLE_NAME |
PARTITION_NAME |
NUM_ROWS |
SAMPLE_SIZE |
B_CTN_NORMAL |
PART_20100101 |
15580400 |
2883811 |
B_CTN_NORMAL |
PART_20090101 |
13007483 |
2420607 |
B_CTN_NORMAL |
PART_20101201 |
3809673 |
709735 |
B_CTN_NORMAL |
PART_20110101 |
2656138 |
494675 |
B_CTN_NORMAL |
PART_20101101 |
2641196 |
492471 |
B_CTN_NORMAL |
PART_20110201 |
1169697 |
217919 |
B_CTN_NORMAL |
PART_20100201 |
1106187 |
205854 |
B_CTN_NORMAL |
PART_20110401 |
662618 |
123426 |
B_CTN_NORMAL |
PART_20110301 |
271190 |
50600 |
B_CTN_NORMAL |
PART_20100501 |
205173 |
37933 |
B_CTN_NORMAL |
PART_20100401 |
194223 |
35804 |
B_CTN_NORMAL |
PART_20100601 |
154195 |
28641 |
B_CTN_NORMAL |
PART_20110501 |
137085 |
25587 |
B_CTN_NORMAL |
PART_20100301 |
105747 |
19575 |
B_CTN_NORMAL |
PART_20101001 |
64424 |
11960 |
B_CTN_NORMAL |
PART_20100701 |
33743 |
6206 |
B_CTN_NORMAL |
PART_20100801 |
4044 |
725 |
B_CTN_NORMAL |
PART_20100901 |
283 |
283 |
B_CTN_NORMAL |
PART_20111001 |
80 |
80 |
B_CTN_NORMAL |
PART_20080101 |
53 |
53 |
B_CTN_NORMAL |
PART_20111201 |
21 |
21 |
B_CTN_NORMAL |
PART_20120601 |
2 |
2 |
B_CTN_NORMAL |
PART_20120301 |
1 |
1 |
B_CTN_NORMAL |
PART_20110601 |
0 |
|
B_CTN_NORMAL |
PART_20110701 |
0 |
|
B_CTN_NORMAL |
PART_20120401 |
0 |
|
B_CTN_NORMAL |
PART_20120801 |
0 |
|
B_CTN_NORMAL |
PART_20120701 |
0 |
|
B_CTN_NORMAL |
PART_20120501 |
0 |
|
B_CTN_NORMAL |
PART_20120201 |
0 |
|
B_CTN_NORMAL |
PART_20120101 |
0 |
|
B_CTN_NORMAL |
PART_20111101 |
0 |
|
B_CTN_NORMAL |
PART_20110801 |
0 |
|
B_CTN_NORMAL |
PART_20110901 |
0 |
|
注:以上的统计信息都是最新收集的.
4.分析制定策略
结合问题sql发现, 两个查询共同依赖于d_prodatetime字段的过滤,但是该字段重复值很多,根据统计信息,该列的NUM_DISTINCT为456,因此只依靠索引没有意义,CBO不会选择索引而是全表扫描。执行这两个查询的时候对数据没有区分度,选择了4K万数据进行全表扫描,效率可写而至。
而该查询较为简单,经过仔细的分析并研究目前的分区策略,我认为最佳的策略是增加范围分区字段,将表重新分区,分区条件纳入d_prodatetime字段。这样查询时可以以d_prodatetime进行分区裁减从而减少扫描的数据量。需要分析字段的值的分布区间,平均分配到各分区。经过分析表的数据分布,从节省时间上考虑,就以每两个月为一个范围进行分区。
partition by range (D_VERIFYDATETIME, d_prodatetime) partition PART_20080101 values less than (TO_DATE(' 2008-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS', 'NLS_CALENDAR=GREGORIAN'), TO_DATE(' 2008-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS', 'NLS_CALENDAR=GREGORIAN')) partition PART_20090101 values less than (TO_DATE(' 2009-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS', 'NLS_CALENDAR=GREGORIAN'), TO_DATE(' 2009-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS', 'NLS_CALENDAR=GREGORIAN'))
|
考虑到sql1中有对n_madein的过滤,分析该字段,字段值总共为17种,为number类型,而且该字段值在字段D_VERIFYDATETIME, d_prodatetime表示的区间中分布很均匀,因此,在上述分区基础上增加list分区,使分区策略变为Rang-list复合分区:
partition by range (D_VERIFYDATETIME, d_prodatetime) subpartition by list(N_MADEIN) partition PART_20080101 values less than (range1,range2) ( subpartition p31 values(64), subpartition p32 values(37), subpartition p33 values(48), subpartition p34 values(55), …………… ), partition PART_20090101 values less than (range3,range4) ( subpartition p31 values(64), subpartition p32 values(37), subpartition p33 values(48), subpartition p34 values(55), ………….. ), )
|
这样,sql1在执行时,会首先根据d_prodatetime裁减掉部分数据,然后再根据N_MADEIN再次裁减掉一部分,这样sql1的性能应该会得到很大提升。而对于仅仅含有N_MAADIN的过滤条件的查询,都会进行分区裁减,减少数据量。具体性能提高多少,需要测试。
同时,之前的分区字段D_VERIFYDATETIME的粒度应该适当的减小。因为d_prodatetime的重复值较多,以之前的分区粒度,2010年前的是每年一个分区,这样会导致d_prodatetime分区后数据会很不均匀,若查询2010年之前的数据,则d_prodatetime裁减的效果会不好,因此需要考虑d_prodatetime的字段值,重新规划分区粒度。分区粒度的大小需要考虑到d_prodatetime的范围分布情况。通过分析决定和d_prodatetime字段使用同样的分区范围。
由于需要对表重新分区,因此需要重建表。如果在已有的分区策略下增加分区,则直接alter表即可,oracle提供了丰富的方法为不同的分区增加新的分区;但是修改分区策略,必须重建表。而表数据量巨大,单表超过20G,因此数据的加载成为头疼的问题,如果在生产环境,产生的日志也很巨大。
第二部分 试验过程结果及分析
为了能试验本文预测的效果,于是我在我本机腾出了30G的空间,将库置于非归档模式,然后用database link以insert append的方式直接加载数据。通过仔细的权衡,我创建的分区表如下(限于时间关系,将所有表分区和索引分区建在一个表空间内):
--ddl过长,省略(见附件)
(注:复合分区可以为二级分区创建一个template,从而减少建表DDL的篇幅)
考虑只有本文开头的两个查询问题突出,因此我只建立了俩索引,选择了全局范围分区索引。
--创建分区索引GLOBAL_INDEX_D_VERIFYDATETIME CREATE INDEX GLOBAL_INDEX_D_VERIFYDATETIME ON b_ctn_normal(D_VERIFYDATETIME) GLOBAL PARTITION BY RANGE(D_VERIFYDATETIME)( partition part_index_0 values less than(to_date('2008-03-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index_1 values less than(to_date('2008-05-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index_2 values less than(to_date('2008-07-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index_3 values less than(to_date('2008-09-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index_4 values less than(to_date('2008-11-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index_5 values less than(to_date('2009-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index_6 values less than(to_date('2009-03-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index_7 values less than(to_date('2009-05-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index_8 values less than(to_date('2009-07-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index_9 values less than(to_date('2009-09-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index_10 values less than(to_date('2009-11-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index_11 values less than(to_date('2010-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index_12 values less than(to_date('2010-03-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index_13 values less than(to_date('2010-05-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index_14 values less than(to_date('2010-07-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index_15 values less than(to_date('2010-09-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index_16 values less than(to_date('2010-11-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index_17 values less than(to_date('2011-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index_18 values less than(to_date('2011-03-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index_19 values less than(to_date('2011-05-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index_20 values less than(to_date('2011-07-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index_21 values less than(to_date('2011-09-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index_22 values less than(to_date('2011-11-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index_23 values less than(to_date('2012-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index_24 values less than(to_date('2012-03-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index_25 values less than(to_date('2012-05-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index_26 values less than(to_date('2012-07-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index_27 values less than(to_date('2012-09-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index_28 values less than(to_date('2012-11-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index_29 values less than(maxvalue) ) |
注:分区索引也可以使用本地前缀索引,可以减少DDL篇幅
考虑到D_PRODATETIME的值较多,当查询来临时,oracle首先以查询where条件中的D_PRODATETIME进行裁减,到目标分区之后,如果有索引的话,应该可以进行INDEX RANGE SCAN进行扫描,因此先建立分区索引试试。同样选择了全局范围分区索引。
--创建分区索引GLOBAL_INDEX_D_PRODATETIME CREATE INDEX GLOBAL_INDEX_D_PRODATETIME ON b_ctn_normal(D_PRODATETIME) GLOBAL PARTITION BY RANGE(D_PRODATETIME)( partition part_index1_0 values less than(to_date('2008-03-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index1_1 values less than(to_date('2008-05-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index1_2 values less than(to_date('2008-07-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index1_3 values less than(to_date('2008-09-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index1_4 values less than(to_date('2008-11-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index1_5 values less than(to_date('2009-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index1_6 values less than(to_date('2009-03-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index1_7 values less than(to_date('2009-05-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index1_8 values less than(to_date('2009-07-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index1_9 values less than(to_date('2009-09-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index1_10 values less than(to_date('2009-11-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index1_11 values less than(to_date('2010-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index1_12 values less than(to_date('2010-03-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index1_13 values less than(to_date('2010-05-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index1_14 values less than(to_date('2010-07-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index1_15 values less than(to_date('2010-09-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index1_16 values less than(to_date('2010-11-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index1_17 values less than(to_date('2011-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index1_18 values less than(to_date('2011-03-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index1_19 values less than(to_date('2011-05-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index1_20 values less than(to_date('2011-07-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index1_21 values less than(to_date('2011-09-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index1_22 values less than(to_date('2011-11-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index1_23 values less than(to_date('2012-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index1_24 values less than(to_date('2012-03-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index1_25 values less than(to_date('2012-05-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index1_26 values less than(to_date('2012-07-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index1_27 values less than(to_date('2012-09-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index1_28 values less than(to_date('2012-11-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS')), partition part_index1_29 values less than(maxvalue) )) |
下面是加载数据以及实施步骤:
l 表数据加载
创建db link “ctn”.
Insert /*+append*/ into b_ctn_normal select * from b_ctn_normal@ctn;
加载速度还可以,大概30分钟加载完,加载数据量4400W。
l 分别按照上述的策略创建分区索引
GLOBAL_INDEX_D_VERIFYDATETIME和GLOBAL_INDEX_D_PRODATETIME
索引创建约为30分钟
l 执行sql1和sql2和原始库进行对比
Sql1的测试结果对比:
|
返回行数 |
Pl/sql查询 |
Sqlplus跟踪 |
优化前 |
30 |
>15分钟 |
00: 04: 31.62 |
优化后 |
30 |
00: 00: 00.03 |
Sql2的测试结果对比:
|
返回行数 |
Pl/sql查询 |
Sqlplus跟踪 |
优化前 |
5529 |
? |
00: 05: 42.67 |
优化后 |
5529 |
00: 00: 00.01 |
通过以上对比结果,显示新的分区策略带来了巨大的性能提升,显示了oracle分区技术的强大威力。原来十几分钟甚至返回不了结果的查询现在毫秒就返回数据。
下面分析优化后的执行计划:
Sql1执行计划:
通过执行计划可以看出,查询正确的使用了d_prodatetime字段进行了分区裁减,然后使用到了该列的分区索引,但是并没有使用n_madein进行裁减。于是改变了下查询条件,将查询的数据量增大:
SELECT c_lotno FROM b_ctn_normal WHERE d_prodatetime BETWEEN to_date('2011-07-01', 'yyyy-mm-dd HH24:MI:SS') AND to_date('2012-07-03', 'yyyy-mm-dd HH24:MI:SS') AND n_madein = 65 AND rownum |
这次,查询使用了二级分区裁减。先是对一级分区进行裁减,然后又对二级分区进行裁减,最后对二级分区使用N_MADEIN进行全表扫描。执行计划显示,查询5000条数据时耗时增加了很多,因为扫描的数据量实在太大了,查询需要扫描很多分区。这样只能通过减少一次查询的数据量来保证性能。通过和开发人员确认,一次查询一般不用返回这么多数据。
Sql2执行计划:
执行计划已经显示的很明确,一级分区按照新分区的字段进行裁减,然后使用建立的分区索引,性能很高。
虽然新的分区策略显示了巨大的性能提升,有效的解决了性能问题,但是仔细分析一下,仍然存在一些问题:
u 分区较多,在4K万级别的表上,分区多达493个,这有些过分了。需要减少分区数量。目前的分区是每俩月一个分区,目前的数据分布比重新分区前均匀了很多,但是仍然存在不均匀现象,而且每俩月一个分区仍然较多。因此需要维持现在的范围分区字段不变,将现在的俩月一个分区的条件变化一下,分析数据的分布区间,制定一个不均匀的分区条件。如2010年8月的数据很多,那可以分别以2010-08-01~2010-08-15~2010-08-30为区间划分。如果2010年9-12月数据很少,那么可以将9-12月合并为一个分区。尽可能的均匀划分分区记录数,也减少分区数量。
u 评估二级分区的必要性。总的分区数是1级分区和二级分区的乘积,为M*N的关系。二级分区的增加,大大增加了分区数。分析发现,有接近一半的二级分区是空闲的,并没有记录装入,浪费了大量的空间。而且目前的sql并没有使用到二级分区裁减,因此需要评估二级分区带来的性能提高。然后考虑是否将二级分区去掉只采用范围分区。去掉二级分区,目前对性能是没有坏处的,而且未来如果用到对N_MADEIN字段的裁剪,直接alter表即可增加二级分区,不用重建。因此建议去掉。
l 总结
分区是处理大表的首要应对策略,但是分区字段的选取和分区的方法需要仔细权衡,一般第一想到的分区字段都是合理的,但是一些隐含的字段没有考虑到,未来数据量上去了,这些隐含的条件造成的性能问题就暴露出来了,因此还是需要全面的分析。
对表进行了分区,相应的也要对索引进行分区,这样可以裁减掉部分索引,然后裁减掉记录,虽然是海量数据,但是却拥有极高的查询速度。记得在一本书上看过,作者说,正是因为有了分区技术,oracle才敢号称是海量数据库。
Reference:
【http://docs.oracle.com/cd/B19306_01/server.102/b14231/partiti.htm#i1009216】
bitsCN.com
如何通过数据库优化提高Python网站的访问速度?摘要在构建Python网站时,数据库是一个关键的组成部分。如果数据库访问速度慢,会直接影响网站的性能和用户体验。本文将讨论一些优化数据库的方法,以提高Python网站的访问速度,并附有一些示例代码。引言对于大多数Python网站来说,数据库是存储和检索数据的关键部分。如果不加以优化,数据库可能成为性能瓶颈。本

在MySQL数据库中,索引是一种非常重要的性能优化手段。当表中的数据量增加时,不适当的索引会导致查询变慢,甚至出现数据库崩溃的情况。为了提高数据库性能,在设计表结构和查询语句时需要合理地使用索引。而复合索引是一种较为高级的索引技术,通过将多个字段作为索引的组合来提高查询的效率。在本文中,将详细介绍如何通过使用复合索引来提高MySQL的性能。什么是复合索引复合

从技术角度来看,为什么Oracle能够击败MySQL?近年来,数据库管理系统(DBMS)在数据存储和处理方面扮演着至关重要的角色。Oracle和MySQL作为两款流行的DBMS,一直以来都备受关注。然而,从技术角度来看,Oracle相对于MySQL在某些方面更为强大,因此Oracle能够击败MySQL。首先,Oracle在处理大规模数据时表现出色。Oracl

随着计算机技术的不断发展和数据规模的不断增长,数据库成为了一项至关重要的技术。然而,在Linux系统中使用数据库还会遇到一些常见的问题,本文将介绍一些常见的Linux系统中的数据库问题以及它们的解决方法。数据库连接问题在使用数据库时,有时会出现连接失败或连接超时等问题,造成这些问题的原因可能是数据库配置错误或者访问权限不足。解决方法:检查数据库的配置文件,确

Java开发中如何解决数据库更新性能问题摘要:随着数据量的增加和业务的变化,数据库更新的性能问题成为了Java开发中一大挑战。本文将介绍一些常见的解决数据库更新性能问题的方法和技巧。关键词:Java开发,数据库,更新性能问题,解决方法引言:在大多数Java应用程序中,数据库扮演着重要的角色。数据库的性能直接影响了应用程序的响应速度和稳定性。而在实际开发中,数

随着互联网技术的快速发展和应用需求的日益增长,PHP的应用场景也越来越广泛。然而,在高并发、海量数据、复杂交互等场景下,传统的PHP编程方式已经不能满足开发需求。而微服务架构则成为了提升系统性能和可维护性的一种有效方式。基于微服务架构的PHP编程微服务架构(MicroserviceArchitecture)是一种面向服务的软件架构设计方式,它将应用按照业务

技术同学必备的MySQL设计规约,助你成为数据库优化专家!随着互联网的迅猛发展,大规模数据存储和高效查询成为了各行业发展的基础。而作为最流行的关系型数据库之一,MySQL在数据存储和查询方面具有强大的能力。然而,要充分发挥MySQL的优势,我们需要遵循一些设计规约和优化策略。本文将介绍一些技术同学必备的MySQL设计规范,并提供一些代码示例,助

随着互联网的发展,越来越多的应用和网站面临的问题是如何处理高并发的场景。PHP作为目前最流行的编程语言之一,在高并发场景下也面临着诸多问题。其中一个重要问题就是数据库优化。数据库是网站应用的核心组成部分,如果没有良好的数据库设计和优化,网站的性能会受到严重影响,甚至会导致系统崩溃。下面是我在实践中总结的一些高并发场景下的PHP编程数据库优化实践,希望对开发者


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SublimeText3 English version
Recommended: Win version, supports code prompts!

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft
