search
HomeTechnology peripheralsAILearning cross-modal occupancy knowledge: RadOcc using rendering-assisted distillation technology

Original title: Radocc: Learning Cross-Modality Occupancy Knowledge through Rendering Assisted Distillation

Paper link: https://arxiv.org/pdf/2312.11829.pdf

Author affiliation: FNii , CUHK-Shenzhen SSE, CUHK-Shenzhen Huawei Noah's Ark Laboratory

Conference: AAAI 2024

Learning cross-modal occupancy knowledge: RadOcc using rendering-assisted distillation technology

Paper idea:

3D occupancy prediction is an emerging task that aims to estimate the occupancy status and semantics of 3D scenes using multi-view images. However, image-based scene perception encounters significant challenges in achieving accurate predictions due to the lack of geometric priors. This paper addresses this problem by exploring cross-modal knowledge distillation in this task, i.e., we utilize a more powerful multi-modal model to guide the visual model during the training process. In practice, this paper observes that direct application of feature or logits alignment, proposed and widely used in bird's-eye view (BEV) perception, does not yield satisfactory results. To overcome this problem, this paper introduces RadOcc, a rendering-assisted distillation paradigm for 3D occupancy prediction. By employing differentiable volume rendering, we generate depth and semantic maps in perspective and propose two novel consistency criteria between the rendered output of teacher and student models. Specifically, the depth consistency loss aligns the termination distributions of rendering rays, while the semantic consistency loss mimics the intra-segment similarity guided by the visual base model (VLM). Experimental results on the nuScenes dataset demonstrate the effectiveness of the method proposed in this article in improving various 3D occupancy prediction methods. For example, the method proposed in this article improves the baseline of this article by 2.2% in the mIoU metric and reaches 2.2% in the Occ3D benchmark. 50%.

Main contributions:

This paper introduces a rendering-assisted distillation paradigm called RadOcc for 3D occupancy prediction. This is the first paper exploring cross-modal knowledge distillation in 3D-OP, providing valuable insights into the application of existing BEV distillation techniques in this task.

The authors propose two novel distillation constraints, namely rendering depth and semantic consistency (RDC and RSC). These constraints effectively enhance the knowledge transfer process by aligning light distribution and correlation matrices guided by the vision base model. The key to this approach is to use depth and semantic information to guide the rendering process, thereby improving the quality and accuracy of the rendering results. By combining these two constraints, the researchers achieved significant improvements, providing new solutions for knowledge transfer in vision tasks.

Equipped with the proposed method, RadOcc shows state-of-the-art dense and sparse occupancy prediction performance on Occ3D and nuScenes benchmarks. In addition, experiments have proven that the distillation method proposed in this article can effectively improve the performance of multiple baseline models.

Network design:

This paper is the first to study cross-modal knowledge distillation for the 3D occupancy prediction task. Based on the method of knowledge transfer using BEV or logits consistency in the BEV sensing field, this paper extends these distillation techniques to the 3D occupancy prediction task, aiming to align voxel features and voxel logits, as shown in Figure 1(a) . However, preliminary experiments show that these alignment techniques face significant challenges in 3D-OP tasks, especially the former method that introduces negative transfer. This challenge may stem from the fundamental difference between 3D object detection and occupancy prediction, which as a more fine-grained perception task requires capturing geometric details as well as background objects.

To address the above challenges, this paper proposes RadOcc, a novel method for cross-modal knowledge distillation using differentiable volume rendering. The core idea of ​​RadOcc is to align the rendering results generated by the teacher model and the student model, as shown in Figure 1(b). Specifically, this article uses the intrinsic and extrinsic parameters of the camera to perform volume rendering of voxel features (Mildenhall et al. 2021), which enables this article to obtain corresponding depth maps and semantic maps from different viewpoints. To achieve better alignment between rendered outputs, this paper introduces novel Rendering Depth Consistency (RDC) and Rendering Semantic Consistency (RSC) losses. On the one hand, RDC loss enforces the consistency of ray distribution, which enables the student model to capture the underlying structure of the data. On the other hand, the RSC loss takes advantage of the visual base model (Kirillov et al. 2023) and utilizes pre-extracted segments for affinity distillation. This standard allows models to learn and compare semantic representations of different image regions, thereby enhancing their ability to capture fine-grained details. By combining the above constraints, the method proposed in this paper effectively leverages cross-modal knowledge distillation, thereby improving performance and better optimizing the student model. This paper demonstrates the effectiveness of our approach on dense and sparse occupancy prediction, achieving state-of-the-art results on both tasks.

Learning cross-modal occupancy knowledge: RadOcc using rendering-assisted distillation technology

Figure 1: Render-assisted distillation. (a) Existing methods align features or logits. (b) The RadOcc method proposed in this paper simultaneously constrains the rendered depth map and semantics. Learning cross-modal occupancy knowledge: RadOcc using rendering-assisted distillation technologyFigure 2: Overall framework of RadOcc. It adopts a teacher-student architecture, where the teacher network is a multi-modal model and the student network only accepts camera input. The predictions of both networks will be used to generate rendering depth and semantics through differentiable volume rendering. Newly proposed rendering depth and semantic consistency losses are adopted between rendering results.

Learning cross-modal occupancy knowledge: RadOcc using rendering-assisted distillation technology

Figure 3: Rendering depth analysis. Although the teacher (T) and student (S) have similar rendering depths, especially for foreground objects, their light termination distributions show large differences.

Learning cross-modal occupancy knowledge: RadOcc using rendering-assisted distillation technology

Figure 4: Generation of affinity matrix. This article first uses the Vision Foundation Model (VFM), namely SAM, to extract segments into the original image. Afterwards, this article performs segment aggregation on the semantic features rendered in each segment to obtain the affinity matrix.

Experimental results:

Learning cross-modal occupancy knowledge: RadOcc using rendering-assisted distillation technology

Learning cross-modal occupancy knowledge: RadOcc using rendering-assisted distillation technologyLearning cross-modal occupancy knowledge: RadOcc using rendering-assisted distillation technology

Learning cross-modal occupancy knowledge: RadOcc using rendering-assisted distillation technology

Learning cross-modal occupancy knowledge: RadOcc using rendering-assisted distillation technology

Learning cross-modal occupancy knowledge: RadOcc using rendering-assisted distillation technology

##Summary:

This paper proposes RadOcc, a new cross-modal approach for 3D occupancy prediction Knowledge distillation paradigm. It utilizes a multimodal teacher model to provide geometric and semantic guidance to the visual student model through differentiable volume rendering. Furthermore, this paper proposes two new consistency criteria, depth consistency loss and semantic consistency loss, to align the ray distribution and affinity matrix between teacher and student models. Extensive experiments on Occ3D and nuScenes datasets show that RadOcc can significantly improve the performance of various 3D occupancy prediction methods. Our method achieves state-of-the-art results on the Occ3D challenge benchmark and significantly outperforms existing published methods. We believe that our work opens up new possibilities for cross-modal learning in scene understanding.

The above is the detailed content of Learning cross-modal occupancy knowledge: RadOcc using rendering-assisted distillation technology. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
The AI Skills Gap Is Slowing Down Supply ChainsThe AI Skills Gap Is Slowing Down Supply ChainsApr 26, 2025 am 11:13 AM

The term "AI-ready workforce" is frequently used, but what does it truly mean in the supply chain industry? According to Abe Eshkenazi, CEO of the Association for Supply Chain Management (ASCM), it signifies professionals capable of critic

How One Company Is Quietly Working To Transform AI ForeverHow One Company Is Quietly Working To Transform AI ForeverApr 26, 2025 am 11:12 AM

The decentralized AI revolution is quietly gaining momentum. This Friday in Austin, Texas, the Bittensor Endgame Summit marks a pivotal moment, transitioning decentralized AI (DeAI) from theory to practical application. Unlike the glitzy commercial

Nvidia Releases NeMo Microservices To Streamline AI Agent DevelopmentNvidia Releases NeMo Microservices To Streamline AI Agent DevelopmentApr 26, 2025 am 11:11 AM

Enterprise AI faces data integration challenges The application of enterprise AI faces a major challenge: building systems that can maintain accuracy and practicality by continuously learning business data. NeMo microservices solve this problem by creating what Nvidia describes as "data flywheel", allowing AI systems to remain relevant through continuous exposure to enterprise information and user interaction. This newly launched toolkit contains five key microservices: NeMo Customizer handles fine-tuning of large language models with higher training throughput. NeMo Evaluator provides simplified evaluation of AI models for custom benchmarks. NeMo Guardrails implements security controls to maintain compliance and appropriateness

AI Paints A New Picture For The Future Of Art And DesignAI Paints A New Picture For The Future Of Art And DesignApr 26, 2025 am 11:10 AM

AI: The Future of Art and Design Artificial intelligence (AI) is changing the field of art and design in unprecedented ways, and its impact is no longer limited to amateurs, but more profoundly affecting professionals. Artwork and design schemes generated by AI are rapidly replacing traditional material images and designers in many transactional design activities such as advertising, social media image generation and web design. However, professional artists and designers also find the practical value of AI. They use AI as an auxiliary tool to explore new aesthetic possibilities, blend different styles, and create novel visual effects. AI helps artists and designers automate repetitive tasks, propose different design elements and provide creative input. AI supports style transfer, which is to apply a style of image

How Zoom Is Revolutionizing Work With Agentic AI: From Meetings To MilestonesHow Zoom Is Revolutionizing Work With Agentic AI: From Meetings To MilestonesApr 26, 2025 am 11:09 AM

Zoom, initially known for its video conferencing platform, is leading a workplace revolution with its innovative use of agentic AI. A recent conversation with Zoom's CTO, XD Huang, revealed the company's ambitious vision. Defining Agentic AI Huang d

The Existential Threat To UniversitiesThe Existential Threat To UniversitiesApr 26, 2025 am 11:08 AM

Will AI revolutionize education? This question is prompting serious reflection among educators and stakeholders. The integration of AI into education presents both opportunities and challenges. As Matthew Lynch of The Tech Edvocate notes, universit

The Prototype: American Scientists Are Looking For Jobs AbroadThe Prototype: American Scientists Are Looking For Jobs AbroadApr 26, 2025 am 11:07 AM

The development of scientific research and technology in the United States may face challenges, perhaps due to budget cuts. According to Nature, the number of American scientists applying for overseas jobs increased by 32% from January to March 2025 compared with the same period in 2024. A previous poll showed that 75% of the researchers surveyed were considering searching for jobs in Europe and Canada. Hundreds of NIH and NSF grants have been terminated in the past few months, with NIH’s new grants down by about $2.3 billion this year, a drop of nearly one-third. The leaked budget proposal shows that the Trump administration is considering sharply cutting budgets for scientific institutions, with a possible reduction of up to 50%. The turmoil in the field of basic research has also affected one of the major advantages of the United States: attracting overseas talents. 35

All About Open AI's Latest GPT 4.1 Family - Analytics VidhyaAll About Open AI's Latest GPT 4.1 Family - Analytics VidhyaApr 26, 2025 am 10:19 AM

OpenAI unveils the powerful GPT-4.1 series: a family of three advanced language models designed for real-world applications. This significant leap forward offers faster response times, enhanced comprehension, and drastically reduced costs compared t

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!