


Original title: Radocc: Learning Cross-Modality Occupancy Knowledge through Rendering Assisted Distillation
Paper link: https://arxiv.org/pdf/2312.11829.pdf
Author affiliation: FNii , CUHK-Shenzhen SSE, CUHK-Shenzhen Huawei Noah's Ark Laboratory
Conference: AAAI 2024
Paper idea:
3D occupancy prediction is an emerging task that aims to estimate the occupancy status and semantics of 3D scenes using multi-view images. However, image-based scene perception encounters significant challenges in achieving accurate predictions due to the lack of geometric priors. This paper addresses this problem by exploring cross-modal knowledge distillation in this task, i.e., we utilize a more powerful multi-modal model to guide the visual model during the training process. In practice, this paper observes that direct application of feature or logits alignment, proposed and widely used in bird's-eye view (BEV) perception, does not yield satisfactory results. To overcome this problem, this paper introduces RadOcc, a rendering-assisted distillation paradigm for 3D occupancy prediction. By employing differentiable volume rendering, we generate depth and semantic maps in perspective and propose two novel consistency criteria between the rendered output of teacher and student models. Specifically, the depth consistency loss aligns the termination distributions of rendering rays, while the semantic consistency loss mimics the intra-segment similarity guided by the visual base model (VLM). Experimental results on the nuScenes dataset demonstrate the effectiveness of the method proposed in this article in improving various 3D occupancy prediction methods. For example, the method proposed in this article improves the baseline of this article by 2.2% in the mIoU metric and reaches 2.2% in the Occ3D benchmark. 50%.
Main contributions:
This paper introduces a rendering-assisted distillation paradigm called RadOcc for 3D occupancy prediction. This is the first paper exploring cross-modal knowledge distillation in 3D-OP, providing valuable insights into the application of existing BEV distillation techniques in this task.
The authors propose two novel distillation constraints, namely rendering depth and semantic consistency (RDC and RSC). These constraints effectively enhance the knowledge transfer process by aligning light distribution and correlation matrices guided by the vision base model. The key to this approach is to use depth and semantic information to guide the rendering process, thereby improving the quality and accuracy of the rendering results. By combining these two constraints, the researchers achieved significant improvements, providing new solutions for knowledge transfer in vision tasks.
Equipped with the proposed method, RadOcc shows state-of-the-art dense and sparse occupancy prediction performance on Occ3D and nuScenes benchmarks. In addition, experiments have proven that the distillation method proposed in this article can effectively improve the performance of multiple baseline models.
Network design:
This paper is the first to study cross-modal knowledge distillation for the 3D occupancy prediction task. Based on the method of knowledge transfer using BEV or logits consistency in the BEV sensing field, this paper extends these distillation techniques to the 3D occupancy prediction task, aiming to align voxel features and voxel logits, as shown in Figure 1(a) . However, preliminary experiments show that these alignment techniques face significant challenges in 3D-OP tasks, especially the former method that introduces negative transfer. This challenge may stem from the fundamental difference between 3D object detection and occupancy prediction, which as a more fine-grained perception task requires capturing geometric details as well as background objects.
To address the above challenges, this paper proposes RadOcc, a novel method for cross-modal knowledge distillation using differentiable volume rendering. The core idea of RadOcc is to align the rendering results generated by the teacher model and the student model, as shown in Figure 1(b). Specifically, this article uses the intrinsic and extrinsic parameters of the camera to perform volume rendering of voxel features (Mildenhall et al. 2021), which enables this article to obtain corresponding depth maps and semantic maps from different viewpoints. To achieve better alignment between rendered outputs, this paper introduces novel Rendering Depth Consistency (RDC) and Rendering Semantic Consistency (RSC) losses. On the one hand, RDC loss enforces the consistency of ray distribution, which enables the student model to capture the underlying structure of the data. On the other hand, the RSC loss takes advantage of the visual base model (Kirillov et al. 2023) and utilizes pre-extracted segments for affinity distillation. This standard allows models to learn and compare semantic representations of different image regions, thereby enhancing their ability to capture fine-grained details. By combining the above constraints, the method proposed in this paper effectively leverages cross-modal knowledge distillation, thereby improving performance and better optimizing the student model. This paper demonstrates the effectiveness of our approach on dense and sparse occupancy prediction, achieving state-of-the-art results on both tasks.
Figure 1: Render-assisted distillation. (a) Existing methods align features or logits. (b) The RadOcc method proposed in this paper simultaneously constrains the rendered depth map and semantics. Figure 2: Overall framework of RadOcc. It adopts a teacher-student architecture, where the teacher network is a multi-modal model and the student network only accepts camera input. The predictions of both networks will be used to generate rendering depth and semantics through differentiable volume rendering. Newly proposed rendering depth and semantic consistency losses are adopted between rendering results.
Figure 3: Rendering depth analysis. Although the teacher (T) and student (S) have similar rendering depths, especially for foreground objects, their light termination distributions show large differences.
Figure 4: Generation of affinity matrix. This article first uses the Vision Foundation Model (VFM), namely SAM, to extract segments into the original image. Afterwards, this article performs segment aggregation on the semantic features rendered in each segment to obtain the affinity matrix.
Experimental results:
##Summary:
This paper proposes RadOcc, a new cross-modal approach for 3D occupancy prediction Knowledge distillation paradigm. It utilizes a multimodal teacher model to provide geometric and semantic guidance to the visual student model through differentiable volume rendering. Furthermore, this paper proposes two new consistency criteria, depth consistency loss and semantic consistency loss, to align the ray distribution and affinity matrix between teacher and student models. Extensive experiments on Occ3D and nuScenes datasets show that RadOcc can significantly improve the performance of various 3D occupancy prediction methods. Our method achieves state-of-the-art results on the Occ3D challenge benchmark and significantly outperforms existing published methods. We believe that our work opens up new possibilities for cross-modal learning in scene understanding.The above is the detailed content of Learning cross-modal occupancy knowledge: RadOcc using rendering-assisted distillation technology. For more information, please follow other related articles on the PHP Chinese website!

写在前面&笔者的个人理解三维Gaussiansplatting(3DGS)是近年来在显式辐射场和计算机图形学领域出现的一种变革性技术。这种创新方法的特点是使用了数百万个3D高斯,这与神经辐射场(NeRF)方法有很大的不同,后者主要使用隐式的基于坐标的模型将空间坐标映射到像素值。3DGS凭借其明确的场景表示和可微分的渲染算法,不仅保证了实时渲染能力,而且引入了前所未有的控制和场景编辑水平。这将3DGS定位为下一代3D重建和表示的潜在游戏规则改变者。为此我们首次系统地概述了3DGS领域的最新发展和关

您一定记得,尤其是如果您是Teams用户,Microsoft在其以工作为重点的视频会议应用程序中添加了一批新的3DFluent表情符号。在微软去年宣布为Teams和Windows提供3D表情符号之后,该过程实际上已经为该平台更新了1800多个现有表情符号。这个宏伟的想法和为Teams推出的3DFluent表情符号更新首先是通过官方博客文章进行宣传的。最新的Teams更新为应用程序带来了FluentEmojis微软表示,更新后的1800表情符号将为我们每天

0.写在前面&&个人理解自动驾驶系统依赖于先进的感知、决策和控制技术,通过使用各种传感器(如相机、激光雷达、雷达等)来感知周围环境,并利用算法和模型进行实时分析和决策。这使得车辆能够识别道路标志、检测和跟踪其他车辆、预测行人行为等,从而安全地操作和适应复杂的交通环境.这项技术目前引起了广泛的关注,并认为是未来交通领域的重要发展领域之一。但是,让自动驾驶变得困难的是弄清楚如何让汽车了解周围发生的事情。这需要自动驾驶系统中的三维物体检测算法可以准确地感知和描述周围环境中的物体,包括它们的位置、

当八卦开始传播新的Windows11正在开发中时,每个微软用户都对新操作系统的外观以及它将带来什么感到好奇。经过猜测,Windows11就在这里。操作系统带有新的设计和功能更改。除了一些添加之外,它还带有功能弃用和删除。Windows11中不存在的功能之一是Paint3D。虽然它仍然提供经典的Paint,它对抽屉,涂鸦者和涂鸦者有好处,但它放弃了Paint3D,它提供了额外的功能,非常适合3D创作者。如果您正在寻找一些额外的功能,我们建议AutodeskMaya作为最好的3D设计软件。如

ChatGPT给AI行业注入一剂鸡血,一切曾经的不敢想,都成为如今的基操。正持续进击的Text-to-3D,就被视为继Diffusion(图像)和GPT(文字)后,AIGC领域的下一个前沿热点,得到了前所未有的关注度。这不,一款名为ChatAvatar的产品低调公测,火速收揽超70万浏览与关注,并登上抱抱脸周热门(Spacesoftheweek)。△ChatAvatar也将支持从AI生成的单视角/多视角原画生成3D风格化角色的Imageto3D技术,受到了广泛关注现行beta版本生成的3D模型,

对于自动驾驶应用来说,最终还是需要对3D场景进行感知。道理很简单,车辆不能靠着一张图像上得到感知结果来行驶,就算是人类司机也不能对着一张图像来开车。因为物体的距离和场景的和深度信息在2D感知结果上是体现不出来的,而这些信息才是自动驾驶系统对周围环境作出正确判断的关键。一般来说,自动驾驶车辆的视觉传感器(比如摄像头)安装在车身上方或者车内后视镜上。无论哪个位置,摄像头所得到的都是真实世界在透视视图(PerspectiveView)下的投影(世界坐标系到图像坐标系)。这种视图与人类的视觉系统很类似,

一些原神“奇怪”的关键词,在这两天很有关注度,明明搜索指数没啥变化,却不断有热议话题蹦窜。例如了龙王、钟离等“转变”立绘激增,虽在网络上疯传了一阵子,但是经过追溯发现这些是合理、常规的二创同人。如果单是这些,倒也翻不起多大的热度。按照一部分网友的说法,除了原神自身就有热度外,发现了一件格外醒目的事情:原神3d同人作者shirakami已经被捕。这引发了不小的热议。为什么被捕?关键词,原神3D动画。还是越过了线(就是你想的那种),再多就不能明说了。经过多方求证,以及新闻报道,确实有此事。自从去年发

原标题:Radocc:LearningCross-ModalityOccupancyKnowledgethroughRenderingAssistedDistillation论文链接:https://arxiv.org/pdf/2312.11829.pdf作者单位:FNii,CUHK-ShenzhenSSE,CUHK-Shenzhen华为诺亚方舟实验室会议:AAAI2024论文思路:3D占用预测是一项新兴任务,旨在使用多视图图像估计3D场景的占用状态和语义。然而,由于缺乏几何先验,基于图像的场景


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

SublimeText3 Chinese version
Chinese version, very easy to use

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft
