Causal convolutional neural network is a special convolutional neural network designed for causality problems in time series data. Compared with conventional convolutional neural networks, causal convolutional neural networks have unique advantages in retaining the causal relationship of time series and are widely used in the prediction and analysis of time series data.
The core idea of causal convolutional neural network is to introduce causality in the convolution operation. Traditional convolutional neural networks can simultaneously perceive data before and after the current time point, but in time series prediction, this may lead to information leakage problems. Because the prediction results at the current time point will be affected by the data at future time points. The causal convolutional neural network solves this problem. It can only perceive the current time point and previous data, but cannot perceive future data, thereby ensuring the causal relationship of time series data. Therefore, causal convolutional neural networks can better handle the prediction and analysis problems of time series data.
There are many ways to implement causal convolutional neural networks, one of the common methods is to use causal convolution kernels. The causal convolution kernel is a special convolution kernel that can only perceive the current time point and previous data, but cannot perceive future data. This design ensures that the convolution results will not be disturbed by future data, thus enabling causality in time series data. Causal convolutional neural networks take advantage of this property to better capture causal relationships when processing time series data. Therefore, by introducing causal convolution kernels, time series data can be effectively processed and the performance of the model can be improved.
In addition to causal convolution kernels, causal convolutional neural networks have other implementation methods, such as the introduction of causal pooling and residual structures. Causal pooling is a special pooling operation that preserves the causal relationship of time series data. In causal pooling, each pooling window only contains data at the current time point and before, and does not include future data. This effectively avoids information leakage and improves the stability and robustness of the model.
Give a simple example. First, you need to import the necessary libraries and modules:
import torch import torch.nn as nn import torch.optim as optim import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler
Then, read and process data:
data = pd.read_csv('temperature.csv') scaler = MinMaxScaler(feature_range=(-1, 1)) data['scaled_temperature'] = scaler.fit_transform(data['temperature'].values.reshape(-1, 1)) data.drop(['temperature'], axis=1, inplace=True)
Then, divide the data set into a training set and a test set:
train_size = int(len(data) * 0.8) test_size = len(data) - train_size train_data, test_data = data.iloc[0:train_size], data.iloc[train_size:len(data)]
Next, define the causal convolutional neural network model:
class CCN(nn.Module): def __init__(self, input_size, output_size, num_filters, kernel_size): super(CCN, self).__init__() self.conv1 = nn.Conv1d(input_size, num_filters, kernel_size, padding=kernel_size - 1) self.conv2 = nn.Conv1d(num_filters, num_filters, kernel_size, padding=kernel_size - 1) self.conv3 = nn.Conv1d(num_filters, num_filters, kernel_size, padding=kernel_size - 1) self.conv4 = nn.Conv1d(num_filters, num_filters, kernel_size, padding=kernel_size - 1) self.conv5 = nn.Conv1d(num_filters, num_filters, kernel_size, padding=kernel_size - 1) self.conv6 = nn.Conv1d(num_filters, num_filters, kernel_size, padding=kernel_size - 1) self.conv7 = nn.Conv1d(num_filters, num_filters, kernel_size, padding=kernel_size - 1) self.conv8 = nn.Conv1d(num_filters, num_filters, kernel_size, padding=kernel_size - 1) self.conv9 = nn.Conv1d(num_filters, num_filters, kernel_size, padding=kernel_size - 1) self.conv10 = nn.Conv1d(num_filters, output_size, kernel_size, padding=kernel_size - 1) def forward(self, x): x = torch.relu(self.conv1(x)) x = torch.relu(self.conv2(x)) x = torch.relu(self.conv3(x)) x = torch.relu(self.conv4(x)) x = torch.relu(self.conv5(x)) x = torch.relu(self.conv6(x)) x = torch.relu(self.conv7(x)) x = torch.relu(self.conv8(x)) x = torch.relu(self.conv9(x)) x = self.conv10(x) return x
After the model definition is completed, the data needs to be pre-processed processed so that it can be input into the model. We convert the data into PyTorch's Tensor type and convert it into a 3D tensor, that is, in the form of (batch_size, sequence_length, input_size):
def create_sequences(data, seq_length): xs = [] ys = [] for i in range(len(data) - seq_length - 1): x = data[i:(i + seq_length)] y = data[i + seq_length] xs.append(x) ys.append(y) return np.array(xs), np.array(ys) sequence_length = 10 trainX, trainY = create_sequences(train_data['scaled_temperature'], sequence_length) testX, testY = create_sequences(test_data['scaled_temperature'], sequence_length) trainX = torch.from_numpy(trainX).float() trainY = torch.from_numpy(trainY).float() testX = torch.from_numpy(testX).float() testY = torch.from_numpy(testY).float() trainX = trainX.view(-1, sequence_length, 1) trainY = trainY.view(-1, 1) testX = testX.view(-1, sequence_length, 1) testY = testY.view(-1, 1)
Next, define the training process:
num_epochs = 1000 learning_rate = 0.001 num_filters = 64 kernel_size = 2 model = CCN(input_size=1, output_size=1, num_filters=num_filters, kernel_size=kernel_size) criterion = nn.MSELoss() optimizer= optim.Adam(model.parameters(), lr=learning_rate) for epoch in range(num_epochs): optimizer.zero_grad() outputs = model(trainX) loss = criterion(outputs, trainY) loss.backward() optimizer.step() if epoch % 100 == 0: print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))
Finally, use the test set to evaluate the model:
with torch.no_grad(): test_outputs = model(testX) test_loss = criterion(test_outputs, testY) print('Test Loss: {:.4f}'.format(test_loss.item())) test_outputs = scaler.inverse_transform(test_outputs.numpy()) testY = scaler.inverse_transform(testY.numpy()) test_outputs = np.squeeze(test_outputs) testY = np.squeeze(testY) plt.plot(test_outputs, label='Predicted') plt.plot(testY, label='True') plt.legend() plt.show()
The above is the implementation process of a simple causal convolutional neural network model, which can be used to predict time series data. It should be noted that in actual applications, the model may need to be adjusted and optimized according to specific tasks to achieve better performance.
Compared with traditional convolutional neural networks, causal convolutional neural networks have unique advantages when processing time series data. It can effectively avoid information leakage problems and better preserve the causal relationship of time series. Therefore, in the prediction and analysis of time series data, causal convolutional neural networks have shown good performance on some tasks. For example, in fields such as speech recognition, natural language processing, and stock prediction, causal convolutional neural networks have been widely used and have achieved some impressive results.
The above is the detailed content of causal convolutional neural network. For more information, please follow other related articles on the PHP Chinese website!

Google's Gemma 2: A Powerful, Efficient Language Model Google's Gemma family of language models, celebrated for efficiency and performance, has expanded with the arrival of Gemma 2. This latest release comprises two models: a 27-billion parameter ver

This Leading with Data episode features Dr. Kirk Borne, a leading data scientist, astrophysicist, and TEDx speaker. A renowned expert in big data, AI, and machine learning, Dr. Borne offers invaluable insights into the current state and future traje

There were some very insightful perspectives in this speech—background information about engineering that showed us why artificial intelligence is so good at supporting people’s physical exercise. I will outline a core idea from each contributor’s perspective to demonstrate three design aspects that are an important part of our exploration of the application of artificial intelligence in sports. Edge devices and raw personal data This idea about artificial intelligence actually contains two components—one related to where we place large language models and the other is related to the differences between our human language and the language that our vital signs “express” when measured in real time. Alexander Amini knows a lot about running and tennis, but he still

Caterpillar's Chief Information Officer and Senior Vice President of IT, Jamie Engstrom, leads a global team of over 2,200 IT professionals across 28 countries. With 26 years at Caterpillar, including four and a half years in her current role, Engst

Google Photos' New Ultra HDR Tool: A Quick Guide Enhance your photos with Google Photos' new Ultra HDR tool, transforming standard images into vibrant, high-dynamic-range masterpieces. Ideal for social media, this tool boosts the impact of any photo,

Introduction Transaction Control Language (TCL) commands are essential in SQL for managing changes made by Data Manipulation Language (DML) statements. These commands allow database administrators and users to control transaction processes, thereby

Harness the power of ChatGPT to create personalized AI assistants! This tutorial shows you how to build your own custom GPTs in five simple steps, even without coding skills. Key Features of Custom GPTs: Create personalized AI models for specific t

Introduction Method overloading and overriding are core object-oriented programming (OOP) concepts crucial for writing flexible and efficient code, particularly in data-intensive fields like data science and AI. While similar in name, their mechanis


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SublimeText3 Mac version
God-level code editing software (SublimeText3)

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Atom editor mac version download
The most popular open source editor