search
HomeTechnology peripheralsAIGoogle's new method ASPIRE: gives LLM self-scoring capabilities, effectively solves the 'illusion' problem, and surpasses 10 times the volume model

The "illusion" problem of large models will soon be solved?

Researchers at the University of Wisconsin-Madison and Google recently launched the ASPIRE system, which enables large models to self-evaluate their output.

If the user sees that the result generated by the model has a low score, they will realize that the reply may be an illusion.

Googles new method ASPIRE: gives LLM self-scoring capabilities, effectively solves the illusion problem, and surpasses 10 times the volume model

If the system can further filter the output based on the score, for example when the score is low, the large model can generate something like "I can't answer this question" " statement, which may improve the hallucination problem to the greatest extent.

Googles new method ASPIRE: gives LLM self-scoring capabilities, effectively solves the illusion problem, and surpasses 10 times the volume model

Paper address: https://aclanthology.org/2023.findings-emnlp.345.pdf

ASPIRE allows LLM to output the answer and the confidence score of the answer.

The researchers’ experimental results show that ASPIRE significantly outperforms traditional selective prediction methods on various QA datasets such as the CoQA benchmark.

Let LLM not only answer questions, but also evaluate those answers.

In the benchmark test of selective prediction, the researchers achieved results of more than 10 times the scale of the model through the ASPIRE system.

Googles new method ASPIRE: gives LLM self-scoring capabilities, effectively solves the illusion problem, and surpasses 10 times the volume model

It’s like asking students to verify their own answers at the back of the textbook. Although it sounds a bit unreliable, if you think about it carefully, everyone After completing a question, there will indeed be a score for the degree of satisfaction with the answer.

This is the essence of ASPIRE, which involves three phases:

(1) Tuning for a specific task,

(2) Answer sampling,

(3) Self-assessment learning.

In the eyes of researchers, ASPIRE is not just another framework, it represents a bright future that comprehensively improves LLM reliability and reduces hallucinations. .

If LLM can become a trusted partner in the decision-making process.

By continuously optimizing the ability to make selective predictions, humans are one step closer to fully realizing the potential of large models.

Researchers hope to use ASPIRE to start the evolution of the next generation of LLM, thereby creating more reliable and self-aware artificial intelligence.

ASPIRE’s mechanics

Fine-tuning for specific tasks

ASPIRE performs task-specific fine-tuning to train adaptive parameters while freezing the LLM. Googles new method ASPIRE: gives LLM self-scoring capabilities, effectively solves the illusion problem, and surpasses 10 times the volume modelGiven a training dataset for the generation task, it fine-tunes the pre-trained LLM to improve its prediction performance.

To this end, parameter-efficient fine-tuning techniques (e.g., soft-cue word fine-tuning and LoRA) can be employed to fine-tune pre-trained LLMs on the task, as they can be efficiently obtained with a small number of targets Strong generalization task data.

Specifically, the LLM parameters (θ) are frozen, and adaptive parameters

are added for fine-tuning. Googles new method ASPIRE: gives LLM self-scoring capabilities, effectively solves the illusion problem, and surpasses 10 times the volume modelOnly update θ (p) to minimize the standard LLM training loss (e.g. cross-entropy).

This kind of fine-tuning can improve selective prediction performance because it not only improves prediction accuracy, but also increases the likelihood of correctly outputting the sequence.

Answer sampling

## After being tuned for a specific task, ASPIRE uses LLM and learned Googles new method ASPIRE: gives LLM self-scoring capabilities, effectively solves the illusion problem, and surpasses 10 times the volume modelGenerate different answers for each training question and create a dataset for self-evaluation learning.

The researcher’s goal is to generate output sequences with high likelihood. They used Beam Search as the decoding algorithm to generate high-likelihood output sequences and used the Rouge-L metric to determine whether the generated output sequences were correct.

Self-evaluation learning

After sampling the high-likelihood output for each query, ASPIRE adds self-evaluation Adapt parameters Googles new method ASPIRE: gives LLM self-scoring capabilities, effectively solves the illusion problem, and surpasses 10 times the volume model and fine-tune only Googles new method ASPIRE: gives LLM self-scoring capabilities, effectively solves the illusion problem, and surpasses 10 times the volume model to learn self-evaluation.

Since the generation of the output sequence depends only on θ and Googles new method ASPIRE: gives LLM self-scoring capabilities, effectively solves the illusion problem, and surpasses 10 times the volume model, freezing θ and the learned Googles new method ASPIRE: gives LLM self-scoring capabilities, effectively solves the illusion problem, and surpasses 10 times the volume model can be avoided Changing LLM's predictive behavior when learning self-evaluation.

The researchers optimized Googles new method ASPIRE: gives LLM self-scoring capabilities, effectively solves the illusion problem, and surpasses 10 times the volume model so that the adapted LLM can distinguish correct and incorrect answers on its own.

Googles new method ASPIRE: gives LLM self-scoring capabilities, effectively solves the illusion problem, and surpasses 10 times the volume model

In this framework, any parameter-valid fine-tuning method can be used to train Googles new method ASPIRE: gives LLM self-scoring capabilities, effectively solves the illusion problem, and surpasses 10 times the volume model and Googles new method ASPIRE: gives LLM self-scoring capabilities, effectively solves the illusion problem, and surpasses 10 times the volume model.

In this work, the researchers used soft-cue fine-tuning, a simple yet effective mechanism for learning "soft cues" to tune frozen language models, thereby Perform specific downstream tasks more efficiently than traditional discrete text prompts.

The core behind this approach is the recognition that if cues can be developed that effectively stimulate self-evaluation, it should be discoverable through fine-tuning of soft cues combined with targeted training goals These tips.

Googles new method ASPIRE: gives LLM self-scoring capabilities, effectively solves the illusion problem, and surpasses 10 times the volume model

After training Googles new method ASPIRE: gives LLM self-scoring capabilities, effectively solves the illusion problem, and surpasses 10 times the volume model and Googles new method ASPIRE: gives LLM self-scoring capabilities, effectively solves the illusion problem, and surpasses 10 times the volume model, the researchers decoded by beam search Get predictions for the query (beam search decoding).

The researchers then define a choice score that combines the likelihood of generating an answer with the learned self-assessment score (i.e., the likelihood that the prediction is correct for the query) to do Make selective predictions.

Results

To demonstrate the effect of ASPIRE, the researchers used various open pre-trained Transformer (OPT) models on three question and answer data Evaluate it on the set (CoQA, TriviaQA and SQuAD).

By adjusting training using soft cuesGoogles new method ASPIRE: gives LLM self-scoring capabilities, effectively solves the illusion problem, and surpasses 10 times the volume modelThe researchers observed a substantial improvement in the accuracy of LLM.

For example, the OPT-2.7B model with ASPIRE showed better performance than the larger pre-trained OPT-30B model using the CoQA and SQuAD datasets.

These results suggest that with appropriate tuning, smaller LLMs may have the ability to match or possibly exceed the accuracy of larger models in some situations.

Googles new method ASPIRE: gives LLM self-scoring capabilities, effectively solves the illusion problem, and surpasses 10 times the volume model

When delving into the calculation of selection scores for fixed model predictions, ASPIRE achieved higher AUROC scores than the baseline method for all datasets (random The probability that a selected correct output sequence has a higher selection score than a randomly selected incorrect output sequence).

For example, on the CoQA benchmark, ASPIRE improves AUROC from 51.3% to 80.3% compared to the baseline.

An interesting pattern emerged from the evaluation of the TriviaQA dataset.

Although the pre-trained OPT-30B model exhibits higher baseline accuracy, its choice when applying traditional self-evaluation methods (Self-eval and P(True)) The performance of sex prediction is not significantly improved.

In contrast, the much smaller OPT-2.7B model outperformed other models in this regard after being enhanced with ASPIRE.

This difference reflects an important issue: larger LLMs that utilize traditional self-assessment techniques may not be as effective at selective prediction as smaller ASPIRE-enhanced models.

Googles new method ASPIRE: gives LLM self-scoring capabilities, effectively solves the illusion problem, and surpasses 10 times the volume model

The researchers’ experimental journey with ASPIRE highlights a key shift in the LLM landscape: A language model’s capacity is not the be-all and end-all of its performance .

Instead, model effectiveness can be greatly improved through policy adjustments, allowing for more accurate and confident predictions even in smaller models.

Thus, ASPIRE demonstrates the potential of LLMs to sensibly determine the certainty of their own answers and significantly outperform others 10 times their size in selective prediction tasks. Model.

The above is the detailed content of Google's new method ASPIRE: gives LLM self-scoring capabilities, effectively solves the 'illusion' problem, and surpasses 10 times the volume model. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
解读CRISP-ML(Q):机器学习生命周期流程解读CRISP-ML(Q):机器学习生命周期流程Apr 08, 2023 pm 01:21 PM

译者 | 布加迪审校 | 孙淑娟目前,没有用于构建和管理机器学习(ML)应用程序的标准实践。机器学习项目组织得不好,缺乏可重复性,而且从长远来看容易彻底失败。因此,我们需要一套流程来帮助自己在整个机器学习生命周期中保持质量、可持续性、稳健性和成本管理。图1. 机器学习开发生命周期流程使用质量保证方法开发机器学习应用程序的跨行业标准流程(CRISP-ML(Q))是CRISP-DM的升级版,以确保机器学习产品的质量。CRISP-ML(Q)有六个单独的阶段:1. 业务和数据理解2. 数据准备3. 模型

人工智能的环境成本和承诺人工智能的环境成本和承诺Apr 08, 2023 pm 04:31 PM

人工智能(AI)在流行文化和政治分析中经常以两种极端的形式出现。它要么代表着人类智慧与科技实力相结合的未来主义乌托邦的关键,要么是迈向反乌托邦式机器崛起的第一步。学者、企业家、甚至活动家在应用人工智能应对气候变化时都采用了同样的二元思维。科技行业对人工智能在创建一个新的技术乌托邦中所扮演的角色的单一关注,掩盖了人工智能可能加剧环境退化的方式,通常是直接伤害边缘人群的方式。为了在应对气候变化的过程中充分利用人工智能技术,同时承认其大量消耗能源,引领人工智能潮流的科技公司需要探索人工智能对环境影响的

找不到中文语音预训练模型?中文版 Wav2vec 2.0和HuBERT来了找不到中文语音预训练模型?中文版 Wav2vec 2.0和HuBERT来了Apr 08, 2023 pm 06:21 PM

Wav2vec 2.0 [1],HuBERT [2] 和 WavLM [3] 等语音预训练模型,通过在多达上万小时的无标注语音数据(如 Libri-light )上的自监督学习,显著提升了自动语音识别(Automatic Speech Recognition, ASR),语音合成(Text-to-speech, TTS)和语音转换(Voice Conversation,VC)等语音下游任务的性能。然而这些模型都没有公开的中文版本,不便于应用在中文语音研究场景。 WenetSpeech [4] 是

条形统计图用什么呈现数据条形统计图用什么呈现数据Jan 20, 2021 pm 03:31 PM

条形统计图用“直条”呈现数据。条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按一定的顺序排列起来;从条形统计图中很容易看出各种数量的多少。条形统计图分为:单式条形统计图和复式条形统计图,前者只表示1个项目的数据,后者可以同时表示多个项目的数据。

自动驾驶车道线检测分类的虚拟-真实域适应方法自动驾驶车道线检测分类的虚拟-真实域适应方法Apr 08, 2023 pm 02:31 PM

arXiv论文“Sim-to-Real Domain Adaptation for Lane Detection and Classification in Autonomous Driving“,2022年5月,加拿大滑铁卢大学的工作。虽然自主驾驶的监督检测和分类框架需要大型标注数据集,但光照真实模拟环境生成的合成数据推动的无监督域适应(UDA,Unsupervised Domain Adaptation)方法则是低成本、耗时更少的解决方案。本文提出对抗性鉴别和生成(adversarial d

数据通信中的信道传输速率单位是bps,它表示什么数据通信中的信道传输速率单位是bps,它表示什么Jan 18, 2021 pm 02:58 PM

数据通信中的信道传输速率单位是bps,它表示“位/秒”或“比特/秒”,即数据传输速率在数值上等于每秒钟传输构成数据代码的二进制比特数,也称“比特率”。比特率表示单位时间内传送比特的数目,用于衡量数字信息的传送速度;根据每帧图像存储时所占的比特数和传输比特率,可以计算数字图像信息传输的速度。

数据分析方法有哪几种数据分析方法有哪几种Dec 15, 2020 am 09:48 AM

数据分析方法有4种,分别是:1、趋势分析,趋势分析一般用于核心指标的长期跟踪;2、象限分析,可依据数据的不同,将各个比较主体划分到四个象限中;3、对比分析,分为横向对比和纵向对比;4、交叉分析,主要作用就是从多个维度细分数据。

聊一聊Python 实现数据的序列化操作聊一聊Python 实现数据的序列化操作Apr 12, 2023 am 09:31 AM

​在日常开发中,对数据进行序列化和反序列化是常见的数据操作,Python提供了两个模块方便开发者实现数据的序列化操作,即 json 模块和 pickle 模块。这两个模块主要区别如下:json 是一个文本序列化格式,而 pickle 是一个二进制序列化格式;json 是我们可以直观阅读的,而 pickle 不可以;json 是可互操作的,在 Python 系统之外广泛使用,而 pickle 则是 Python 专用的;默认情况下,json 只能表示 Python 内置类型的子集,不能表示自定义的

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Hot Tools

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!