search
HomeOperation and MaintenanceLinux Operation and MaintenanceExplore the Linux caching mechanism: detailed explanation of memory, disk and file system caching

Explore the Linux caching mechanism: detailed explanation of memory, disk and file system caching

In-depth understanding of Linux cache mechanism: memory cache, disk cache and file system cache

Introduction: In Linux system, cache is an important mechanism for Accelerate data access and improve system performance. This article will delve into the three caching mechanisms in Linux: memory caching, disk caching, and file system caching, and provide specific code examples to help readers better understand and use these caching mechanisms.

1. Memory cache

Memory cache means that the Linux system caches file data on the disk in the memory to reduce frequent reads and writes to the disk, thereby speeding up data access. The memory cache in the Linux system mainly consists of page cache. When an application reads a file, the operating system reads the contents of the file into the page cache and stores them in memory. The next time the file is read, the operating system first checks whether the cache data for the file exists in the page cache. If it exists, it reads it directly from the cache instead of accessing the disk again. This mechanism can significantly improve file access speed.

The following is a simple C code example that shows how to use the memory cache:

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>

int main() {
    int fd;
    struct stat sb;
    char *file_data;

    // 打开文件
    fd = open("test.txt", O_RDONLY);
    if (fd == -1) {
        perror("open");
        exit(1);
    }

    // 获取文件大小
    if (fstat(fd, &sb) == -1) {
        perror("fstat");
        exit(1);
    }

    // 将文件映射到内存中
    file_data = mmap(NULL, sb.st_size, PROT_READ, MAP_PRIVATE, fd, 0);
    if (file_data == MAP_FAILED) {
        perror("mmap");
        exit(1);
    }

    // 通过内存访问文件内容
    printf("%s", file_data);

    // 解除内存映射
    if (munmap(file_data, sb.st_size) == -1) {
        perror("munmap");
        exit(1);
    }

    // 关闭文件
    close(fd);

    return 0;
}

The above code uses the mmap function to map the file into memory and access the file content through the pointer file_data. In this way, the contents of the file will be cached in memory, and the file contents can be read directly the next time it is accessed, without the need to access the disk again.

2. Disk cache

In addition to the memory cache, the Linux system also has an important caching mechanism which is the disk cache. Disk caching means that Linux uses part of the memory as a cache for disk I/O to improve the performance of disk access. When an application performs a disk read or write operation, the operating system first caches the data in memory and then writes the data to disk. This mechanism can reduce frequent access to the disk and improve disk read and write efficiency.

The following is a simple C code example that shows how to use the disk cache:

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>

int main() {
    int fd;
    char buffer[512];

    // 打开文件
    fd = open("test.txt", O_WRONLY | O_CREAT, S_IRUSR | S_IWUSR);
    if (fd == -1) {
        perror("open");
        exit(1);
    }

    // 写入文件
    write(fd, buffer, sizeof(buffer));

    // 刷新文件缓冲
    fsync(fd);

    // 关闭文件
    close(fd);

    return 0;
}

The above code uses the write function to write data to the file, and refreshes the file buffer through the fsync function. In this way, data is first cached in memory and then written to disk uniformly. This mechanism can significantly improve disk write performance.

3. File system cache

The file system cache refers to the cache used by the file system in the Linux system and is used to accelerate file system access. The file system cache mainly consists of file system data structures and metadata (such as file permissions, creation time, etc.). When an application performs file system operations, the operating system caches relevant data in memory to improve file system access speed.

The following is a simple C code example that shows how to use the file system cache:

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>

int main() {
    int fd;

    // 打开文件
    fd = open("test.txt", O_RDONLY);
    if (fd == -1) {
        perror("open");
        exit(1);
    }

    // 修改文件权限
    if (fchmod(fd, S_IRUSR | S_IWUSR) == -1) {
        perror("fchmod");
        exit(1);
    }

    // 关闭文件
    close(fd);

    return 0;
}

The above code uses the fchmod function to modify the permissions of the file. In this way, file-related information will be cached in memory and can be used directly in subsequent file accesses, improving the efficiency of file operations.

Conclusion:

This article deeply explores the three caching mechanisms in Linux: memory cache, disk cache and file system cache, and provides specific code examples. By understanding and using these caching mechanisms, you can improve system performance and speed up data access. I hope this article will help readers understand and apply the Linux caching mechanism.

The above is the detailed content of Explore the Linux caching mechanism: detailed explanation of memory, disk and file system caching. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
什么是linux设备节点什么是linux设备节点Apr 18, 2022 pm 08:10 PM

linux设备节点是应用程序和设备驱动程序沟通的一个桥梁;设备节点被创建在“/dev”,是连接内核与用户层的枢纽,相当于硬盘的inode一样的东西,记录了硬件设备的位置和信息。设备节点使用户可以与内核进行硬件的沟通,读写设备以及其他的操作。

Linux中open和fopen的区别有哪些Linux中open和fopen的区别有哪些Apr 29, 2022 pm 06:57 PM

区别:1、open是UNIX系统调用函数,而fopen是ANSIC标准中的C语言库函数;2、open的移植性没fopen好;3、fopen只能操纵普通正规文件,而open可以操作普通文件、网络套接字等;4、open无缓冲,fopen有缓冲。

linux中什么叫端口映射linux中什么叫端口映射May 09, 2022 pm 01:49 PM

端口映射又称端口转发,是指将外部主机的IP地址的端口映射到Intranet中的一台计算机,当用户访问外网IP的这个端口时,服务器自动将请求映射到对应局域网内部的机器上;可以通过使用动态或固定的公共网络IP路由ADSL宽带路由器来实现。

linux中eof是什么linux中eof是什么May 07, 2022 pm 04:26 PM

在linux中,eof是自定义终止符,是“END Of File”的缩写;因为是自定义的终止符,所以eof就不是固定的,可以随意的设置别名,linux中按“ctrl+d”就代表eof,eof一般会配合cat命令用于多行文本输出,指文件末尾。

linux怎么判断pcre是否安装linux怎么判断pcre是否安装May 09, 2022 pm 04:14 PM

在linux中,可以利用“rpm -qa pcre”命令判断pcre是否安装;rpm命令专门用于管理各项套件,使用该命令后,若结果中出现pcre的版本信息,则表示pcre已经安装,若没有出现版本信息,则表示没有安装pcre。

什么是linux交叉编译什么是linux交叉编译Apr 29, 2022 pm 06:47 PM

在linux中,交叉编译是指在一个平台上生成另一个平台上的可执行代码,即编译源代码的平台和执行源代码编译后程序的平台是两个不同的平台。使用交叉编译的原因:1、目标系统没有能力在其上进行本地编译;2、有能力进行源代码编译的平台与目标平台不同。

linux中rpc是什么意思linux中rpc是什么意思May 07, 2022 pm 04:48 PM

在linux中,rpc是远程过程调用的意思,是Reomote Procedure Call的缩写,特指一种隐藏了过程调用时实际通信细节的IPC方法;linux中通过RPC可以充分利用非共享内存的多处理器环境,提高系统资源的利用率。

linux怎么查询mac地址linux怎么查询mac地址Apr 24, 2022 pm 08:01 PM

linux查询mac地址的方法:1、打开系统,在桌面中点击鼠标右键,选择“打开终端”;2、在终端中,执行“ifconfig”命令,查看输出结果,在输出信息第四行中紧跟“ether”单词后的字符串就是mac地址。

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.