


Deep understanding of Linux caching mechanism: key steps to optimize system performance
Mastering the Linux caching mechanism: a key step to improve system performance, specific code examples are required
Abstract: The caching mechanism of the Linux system is one of the important factors in improving system performance . This article will introduce the caching mechanism of Linux, focusing on page caching and disk caching, and give specific code examples to help readers better understand and apply the Linux caching mechanism to improve system performance.
1. Introduction
With the development of computer technology, modern operating systems face the challenge of performance bottlenecks when processing large amounts of data. In order to improve the operating efficiency of the system, the Linux system introduces a caching mechanism to cache data on the disk in the memory, thereby reducing the number of disk IOs and improving system performance. This article will delve into the caching mechanism of Linux and use specific code examples to help readers understand and apply the Linux caching mechanism.
2. Linux caching mechanism
- Page caching
Page caching is the most common form of caching in Linux. When files are read into memory, they are stored in the page cache. In subsequent read operations, the kernel first checks the page cache. If it finds that the page of the file has been cached, it reads directly from the page cache, avoiding disk IO operations. Page caching is useful for files that are frequently read (such as system files, library files, etc.). - Disk cache
In addition to page caching, Linux also introduces a disk caching mechanism to cache data on the disk in memory. When an application needs to write data to the disk, the kernel first writes the data to the disk cache, and writes the data in the cache to the disk at the appropriate time, reducing the number of disk IOs and improving system performance. Disk caching is very beneficial for applications that frequently write to disk, such as databases.
3. Specific code examples
The following are some specific code examples to show how to use the Linux caching mechanism to improve system performance.
-
Use the mmap function for memory mapping of files
#include <fcntl.h> #include <sys/mman.h> #include <sys/stat.h> #include <unistd.h> int main() { int fd = open("test.txt", O_RDONLY); struct stat sb; fstat(fd, &sb); void* addr = mmap(NULL, sb.st_size, PROT_READ, MAP_PRIVATE, fd, 0); // 现在test.txt文件的内容被映射到了内存中的addr处,可以直接从内存中读取数据 munmap(addr, sb.st_size); close(fd); return 0; }
By using the mmap function, the file "test.txt" is mapped to the memory and can be read directly from the memory Fetching the contents of the file avoids disk IO operations and improves system performance.
-
Use the write function to write data
#include <fcntl.h> #include <unistd.h> int main() { int fd = open("test.txt", O_WRONLY | O_CREAT, 0644); const char* buf = "Hello, World! "; size_t len = strlen(buf); write(fd, buf, len); // 现在数据被写入到磁盘缓存中,稍后会由内核将数据写入磁盘 close(fd); return 0; }
By using the write function, write the data to the disk cache of the file "test.txt", later Data is written to disk by the kernel. This can reduce frequent disk IO operations and improve system performance.
4. Summary
This article introduces the caching mechanism of Linux, focusing on page caching and disk caching, and gives specific code examples. By properly applying the caching mechanism, frequent disk IO operations can be avoided and system performance improved. Readers can flexibly apply the caching mechanism according to specific needs and application scenarios to improve system performance.
The above is the detailed content of Deep understanding of Linux caching mechanism: key steps to optimize system performance. For more information, please follow other related articles on the PHP Chinese website!

The basic structure of Linux includes the kernel, file system, and shell. 1) Kernel management hardware resources and use uname-r to view the version. 2) The EXT4 file system supports large files and logs and is created using mkfs.ext4. 3) Shell provides command line interaction such as Bash, and lists files using ls-l.

The key steps in Linux system management and maintenance include: 1) Master the basic knowledge, such as file system structure and user management; 2) Carry out system monitoring and resource management, use top, htop and other tools; 3) Use system logs to troubleshoot, use journalctl and other tools; 4) Write automated scripts and task scheduling, use cron tools; 5) implement security management and protection, configure firewalls through iptables; 6) Carry out performance optimization and best practices, adjust kernel parameters and develop good habits.

Linux maintenance mode is entered by adding init=/bin/bash or single parameters at startup. 1. Enter maintenance mode: Edit the GRUB menu and add startup parameters. 2. Remount the file system to read and write mode: mount-oremount,rw/. 3. Repair the file system: Use the fsck command, such as fsck/dev/sda1. 4. Back up the data and operate with caution to avoid data loss.

This article discusses how to improve Hadoop data processing efficiency on Debian systems. Optimization strategies cover hardware upgrades, operating system parameter adjustments, Hadoop configuration modifications, and the use of efficient algorithms and tools. 1. Hardware resource strengthening ensures that all nodes have consistent hardware configurations, especially paying attention to CPU, memory and network equipment performance. Choosing high-performance hardware components is essential to improve overall processing speed. 2. Operating system tunes file descriptors and network connections: Modify the /etc/security/limits.conf file to increase the upper limit of file descriptors and network connections allowed to be opened at the same time by the system. JVM parameter adjustment: Adjust in hadoop-env.sh file

This guide will guide you to learn how to use Syslog in Debian systems. Syslog is a key service in Linux systems for logging system and application log messages. It helps administrators monitor and analyze system activity to quickly identify and resolve problems. 1. Basic knowledge of Syslog The core functions of Syslog include: centrally collecting and managing log messages; supporting multiple log output formats and target locations (such as files or networks); providing real-time log viewing and filtering functions. 2. Install and configure Syslog (using Rsyslog) The Debian system uses Rsyslog by default. You can install it with the following command: sudoaptupdatesud

When choosing a Hadoop version suitable for Debian system, the following key factors need to be considered: 1. Stability and long-term support: For users who pursue stability and security, it is recommended to choose a Debian stable version, such as Debian11 (Bullseye). This version has been fully tested and has a support cycle of up to five years, which can ensure the stable operation of the system. 2. Package update speed: If you need to use the latest Hadoop features and features, you can consider Debian's unstable version (Sid). However, it should be noted that unstable versions may have compatibility issues and stability risks. 3. Community support and resources: Debian has huge community support, which can provide rich documentation and

This article describes how to use TigerVNC to share files on Debian systems. You need to install the TigerVNC server first and then configure it. 1. Install the TigerVNC server and open the terminal. Update the software package list: sudoaptupdate to install TigerVNC server: sudoaptinstalltigervnc-standalone-servertigervnc-common 2. Configure TigerVNC server to set VNC server password: vncpasswd Start VNC server: vncserver:1-localhostno

Configuring a Debian mail server's firewall is an important step in ensuring server security. The following are several commonly used firewall configuration methods, including the use of iptables and firewalld. Use iptables to configure firewall to install iptables (if not already installed): sudoapt-getupdatesudoapt-getinstalliptablesView current iptables rules: sudoiptables-L configuration


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

Dreamweaver Mac version
Visual web development tools

Notepad++7.3.1
Easy-to-use and free code editor