search
HomeBackend DevelopmentPython TutorialParse the Ford-Fulkerson algorithm and implement it through Python

The Ford-Fulkerson algorithm is a greedy algorithm used to calculate the maximum flow in the network. The principle is to find an augmenting path with a positive remaining capacity. As long as the augmenting path is found, you can continue to add paths and calculate traffic. Until the augmenting path no longer exists, the maximum flow rate can be obtained.

Terminology of Ford-Fulkerson algorithm

Remaining capacity: It is the capacity minus the flow. In the Ford-Fulkerson algorithm, the remaining capacity is a positive number before it can continue to be used as a path.

Residual network: It is a network with the same vertices and edges, using residual capacity as capacity.

Augmented path: It is the path from the source point to the receiving point in the residual graph, with a final capacity of 0.

Ford-Fulkerson algorithm principle example

The concept may not be very clear. Let’s look at an example. The initial traffic of all edges of the flow network is 0, and there is a corresponding capacity upper limit. Set The starting point is S and the receiving point is T.

Ford-Fulkerson算法概念详解 Python实现Ford-Fulkerson算法

Path one, the remaining capacity of the S-A-B-T path is 8, 9, 2, and the minimum value is 2, so the traffic of path one is 2. At this time The network diagram has a flow rate of 2.

Ford-Fulkerson算法概念详解 Python实现Ford-Fulkerson算法

Path two, the remaining capacity of the S-D-C-T path is 3, 4, 5, and the minimum value is 3, so we can increase the traffic by 3. At this time The traffic of the network is 5.

Ford-Fulkerson算法概念详解 Python实现Ford-Fulkerson算法

Path three, the remaining capacity of the S-A-B-D-C-T path is 6, 7, 7, 1, 2, and the minimum value is 1, so the traffic increases by 1, which The network traffic at this time is 6.

Ford-Fulkerson算法概念详解 Python实现Ford-Fulkerson算法

At this point, there is no positive remaining capacity, and the maximum flow of the flow network is 6.

Python implements Ford-Fulkerson algorithm

from collections import defaultdict

class Graph:

    def __init__(self, graph):
        self.graph = graph
        self. ROW = len(graph)

    def searching_algo_BFS(self, s, t, parent):

        visited = [False] * (self.ROW)
        queue = []

        queue.append(s)
        visited[s] = True

        while queue:

            u = queue.pop(0)

            for ind, val in enumerate(self.graph[u]):
                if visited[ind] == False and val > 0:
                    queue.append(ind)
                    visited[ind] = True
                    parent[ind] = u

        return True if visited[t] else False

    def ford_fulkerson(self, source, sink):
        parent = [-1] * (self.ROW)
        max_flow = 0

        while self.searching_algo_BFS(source, sink, parent):

            path_flow = float("Inf")
            s = sink
            while(s != source):
                path_flow = min(path_flow, self.graph[parent[s]][s])
                s = parent[s]

            max_flow += path_flow

            v = sink
            while(v != source):
                u = parent[v]
                self.graph[u][v] -= path_flow
                self.graph[v][u] += path_flow
                v = parent[v]

        return max_flow

graph = [[0, 8, 0, 0, 3, 0],
         [0, 0, 9, 0, 0, 0],
         [0, 0, 0, 0, 7, 2],
         [0, 0, 0, 0, 0, 5],
         [0, 0, 7, 4, 0, 0],
         [0, 0, 0, 0, 0, 0]]

g = Graph(graph)

source = 0
sink = 5

print("Max Flow: %d " % g.ford_fulkerson(source, sink))

The above is the detailed content of Parse the Ford-Fulkerson algorithm and implement it through Python. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:网易伏羲. If there is any infringement, please contact admin@php.cn delete
Python: Automation, Scripting, and Task ManagementPython: Automation, Scripting, and Task ManagementApr 16, 2025 am 12:14 AM

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Python and Time: Making the Most of Your Study TimePython and Time: Making the Most of Your Study TimeApr 14, 2025 am 12:02 AM

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python: Games, GUIs, and MorePython: Games, GUIs, and MoreApr 13, 2025 am 12:14 AM

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

Python vs. C  : Applications and Use Cases ComparedPython vs. C : Applications and Use Cases ComparedApr 12, 2025 am 12:01 AM

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

The 2-Hour Python Plan: A Realistic ApproachThe 2-Hour Python Plan: A Realistic ApproachApr 11, 2025 am 12:04 AM

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python: Exploring Its Primary ApplicationsPython: Exploring Its Primary ApplicationsApr 10, 2025 am 09:41 AM

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

How Much Python Can You Learn in 2 Hours?How Much Python Can You Learn in 2 Hours?Apr 09, 2025 pm 04:33 PM

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

How to teach computer novice programming basics in project and problem-driven methods within 10 hours?How to teach computer novice programming basics in project and problem-driven methods within 10 hours?Apr 02, 2025 am 07:18 AM

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Chat Commands and How to Use Them
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor