


Examples of practical applications of the combination of shallow features and deep features
Deep learning has achieved great success in the field of computer vision, and one of the important advances is the use of deep convolutional neural networks (CNN) for image classification. However, deep CNNs usually require large amounts of labeled data and computing resources. In order to reduce the demand for computational resources and labeled data, researchers began to study how to fuse shallow features and deep features to improve image classification performance. This fusion method can take advantage of the high computational efficiency of shallow features and the strong representation ability of deep features. By combining the two, computational costs and data labeling requirements can be reduced while maintaining high classification accuracy. This method is particularly important for application scenarios with small data volumes or limited computing resources. By in-depth study of the fusion method of shallow features and deep features, we can further improve the performance of image classification algorithms and bring more breakthroughs to research and applications in the field of computer vision.
A common method is to use a cascade CNN model. The first CNN model is used to extract shallow features, the second CNN model is used to extract deep features, and finally the The outputs of the two models are concatenated to improve the accuracy of the classification results.
This is an example of using a cascaded CNN model to recognize handwritten digits. The model uses the MNIST dataset, which includes 60,000 training images and 10,000 test images, each image size is 28×28 pixels.
First, we define the architecture of the model. We use two CNN models to extract features. The first CNN model contains two convolutional layers and a max pooling layer to extract shallow features. The second CNN model contains three convolutional layers and a max pooling layer to extract deep features. Next, we concatenate the outputs of the two models together and add two fully connected layers for classification. Such an architecture can extract rich features and perform better classification tasks.
import tensorflow as tf from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, Flatten, Dense, Concatenate # Define shallow CNN model shallow_input = Input(shape=(28, 28, 1)) shallow_conv1 = Conv2D(32, (3, 3), activation='relu', padding='same')(shallow_input) shallow_pool1 = MaxPooling2D((2, 2))(shallow_conv1) shallow_conv2 = Conv2D(64, (3, 3), activation='relu', padding='same')(shallow_pool1) shallow_pool2 = MaxPooling2D((2, 2))(shallow_conv2) shallow_flat = Flatten()(shallow_pool2) shallow_output = Dense(128, activation='relu')(shallow_flat) # Define deep CNN model deep_input = Input(shape=(28, 28, 1)) deep_conv1 = Conv2D(32, (3, 3), activation='relu', padding='same')(deep_input) deep_pool1 = MaxPooling2D((2, 2))(deep_conv1) deep_conv2 = Conv2D(64, (3, 3), activation='relu', padding='same')(deep_pool1) deep_pool2 = MaxPooling2D((2, 2))(deep_conv2) deep_conv3 = Conv2D(128, (3, 3), activation='relu', padding='same')(deep_pool2) deep_pool3 = MaxPooling2D((2, 2))(deep_conv3) deep_flat = Flatten()(deep_pool3) deep_output = Dense(256, activation='relu')(deep_flat) # Concatenate shallow and deep models concatenate = Concatenate()([shallow_output, deep_output]) output = Dense(10, activation='softmax')(concatenate) # Define the model model = tf.keras.Model(inputs=[shallow_input, deep_input], outputs=output)
The model is then compiled and trained. Since the MNIST dataset is a multi-class classification problem, the cross-entropy loss function and Adam optimizer are used to compile the model. The model is trained on the training set for 100 epochs, using 128 batches for each epoch.
# Compile the model model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # Train the model model.fit([x_train, x_train], y_train, batch_size=128, epochs=100, verbose=1, validation_data=([x_test, x_test], y_test))
Finally, evaluate the model’s performance on the test set. In this example, the test accuracy of the cascaded CNN model is 99.2%, which is about 0.5% higher than the test accuracy trained with a single CNN model, indicating that the fusion of shallow features and deep features can indeed improve the performance of image classification.
In short, the fusion of shallow features and deep features is an effective method to improve the performance of image classification. This example shows how to use cascaded CNN models to recognize handwritten digits, where the first CNN model extracts shallow features, the second CNN model extracts deep features, and then the outputs of the two models are concatenated together for classification. This method is also widely used in many other image classification tasks.
The above is the detailed content of Examples of practical applications of the combination of shallow features and deep features. For more information, please follow other related articles on the PHP Chinese website!

Introduction Suppose there is a farmer who daily observes the progress of crops in several weeks. He looks at the growth rates and begins to ponder about how much more taller his plants could grow in another few weeks. From th

Soft AI — defined as AI systems designed to perform specific, narrow tasks using approximate reasoning, pattern recognition, and flexible decision-making — seeks to mimic human-like thinking by embracing ambiguity. But what does this mean for busine

The answer is clear—just as cloud computing required a shift toward cloud-native security tools, AI demands a new breed of security solutions designed specifically for AI's unique needs. The Rise of Cloud Computing and Security Lessons Learned In th

Entrepreneurs and using AI and Generative AI to make their businesses better. At the same time, it is important to remember generative AI, like all technologies, is an amplifier – making the good great and the mediocre, worse. A rigorous 2024 study o

Unlock the Power of Embedding Models: A Deep Dive into Andrew Ng's New Course Imagine a future where machines understand and respond to your questions with perfect accuracy. This isn't science fiction; thanks to advancements in AI, it's becoming a r

Large Language Models (LLMs) and the Inevitable Problem of Hallucinations You've likely used AI models like ChatGPT, Claude, and Gemini. These are all examples of Large Language Models (LLMs), powerful AI systems trained on massive text datasets to

Recent research has shown that AI Overviews can cause a whopping 15-64% decline in organic traffic, based on industry and search type. This radical change is causing marketers to reconsider their whole strategy regarding digital visibility. The New

A recent report from Elon University’s Imagining The Digital Future Center surveyed nearly 300 global technology experts. The resulting report, ‘Being Human in 2035’, concluded that most are concerned that the deepening adoption of AI systems over t


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Dreamweaver Mac version
Visual web development tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.