第一,就是完全按照范式理论去设计,一般来说达到第三范式就可以了,或者你可以划分的更细到达更上一层次。比如第四,第五,第六等等。这种设计有自己的可读性很强,但是有一点,在检索数据的时候增加了多张关系表来做关联的开销。
第二,就是在范式理论上适当的做些反范式,有的东西还是不要太剥离的好。(窄表以及宽表) 这点和软件设计中的紧耦合松耦合理论一致。
下面我就以常用的LOG表来做下演示,其中有两种表的实际,一种是窄表,一种是稍微宽一点的表。
窄表:log_ytt
mysql> show create table log_ytt;+-------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------+| Table | Create Table |+-------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------+| log_ytt | CREATE TABLE `log_ytt` (`ids` bigint(20) DEFAULT NULL,`log_time` datetime DEFAULT NULL,KEY `idx_u1` (`ids`,`log_time`)) ENGINE=InnoDB DEFAULT CHARSET=utf8 | +-------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------+1 row in set (0.00 sec)
表记录数
mysql>select * from log_ytt where ids > '4875000001';+------------+---------------------+| ids| log_time|+------------+---------------------+| 7110000001 | 2014-05-20 21:56:42 | | 6300000001 | 2014-05-20 21:56:42 | | 6750000001 | 2014-05-20 21:56:42 | | 5310000001 | 2014-05-20 21:56:42 | | 7200000001 | 2014-05-20 21:56:42 | | 7380000001 | 2014-05-20 21:56:42 | | 5760000001 | 2014-05-20 21:56:42 | | 6930000001 | 2014-05-20 21:56:42 | | 6660000001 | 2014-05-20 21:56:42 | | 5670000001 | 2014-05-20 21:56:42 | | 6210000001 | 2014-05-20 21:56:42 | | 5850000001 | 2014-05-20 21:56:42 | | 6570000001 | 2014-05-20 21:56:42 | | 5580000001 | 2014-05-20 21:56:42 | | 5130000001 | 2014-05-20 21:56:42 | | 7290000001 | 2014-05-20 21:56:42 | | 6390000001 | 2014-05-20 21:56:42 | | 5490000001 | 2014-05-20 21:56:42 | | 5220000001 | 2014-05-20 21:56:42 | | 7560000001 | 2014-05-20 21:56:42 | | 7470000001 | 2014-05-20 21:56:42 | | 7020000001 | 2014-05-20 21:56:42 | | 6840000001 | 2014-05-20 21:56:42 | | 6030000001 | 2014-05-20 21:56:42 | | 6480000001 | 2014-05-20 21:56:42 | | 7650000001 | 2014-05-20 21:56:42 | | 5940000001 | 2014-05-20 21:56:42 | | 6120000001 | 2014-05-20 21:56:42 | | 7740000001 | 2014-05-20 21:56:42 | | 5400000001 | 2014-05-20 21:56:42 | | 5760000001 | 2014-05-21 03:19:07 | | 6840000001 | 2014-05-21 03:19:17 | | 7020000001 | 2014-05-21 03:19:32 | | 7200000001 | 2014-05-21 03:19:45 | | 7110000001 | 2014-05-21 03:19:46 | | 7380000001 | 2014-05-21 03:19:48 | | 5670000001 | 2014-05-21 03:19:58 | | 6930000001 | 2014-05-21 03:19:59 | | 6030000001 | 2014-05-21 03:20:00 | | 5940000001 | 2014-05-21 03:20:00 | | 7290000001 | 2014-05-21 03:20:02 | | 6120000001 | 2014-05-21 03:20:09 | | 5850000001 | 2014-05-21 03:20:18 | | 5580000001 | 2014-05-21 03:20:24 | | 6480000001 | 2014-05-21 03:25:05 | | 6390000001 | 2014-05-21 03:25:37 | | 6210000001 | 2014-05-21 03:25:45 | | 7470000001 | 2014-05-21 03:26:14 | | 6750000001 | 2014-05-21 03:27:17 | | 5310000001 | 2014-05-21 03:27:33 | | 5130000001 | 2014-05-21 03:27:34 | | 6570000001 | 2014-05-21 03:27:34 | | 7560000001 | 2014-05-21 03:27:45 | | 5220000001 | 2014-05-21 03:27:45 | | 5400000001 | 2014-05-21 03:27:53 | | 5490000001 | 2014-05-21 03:27:55 | | 6660000001 | 2014-05-21 03:28:07 | | 6300000001 | 2014-05-21 03:28:13 | | 7740000001 | 2014-05-21 03:28:26 | | 7650000001 | 2014-05-21 03:28:37 | +------------+---------------------+60 rows in set (0.00 sec)接下来,我们要检索所有IDS的平均时间。 有以下两种方式:
第一, 对表进行了两次访问,并且有GROUP BY 操作,不可取。
mysql> select sec_to_time(avg(timestampdiff(second,a.times,b.times)))as 'running' -> from -> (select ids,min(log_time) as times from log_ytt where 1 group by ids ) as a, -> (select ids,max(log_time) as times from log_ytt where 1 group by ids) as b where a.ids = b.ids;+---------------+| running |+---------------+| 05:27:08.8333 | +---------------+1 row in set (0.00 sec)第二,虽然对表进行了最少的访问,但是也有一次GROUP BY 操作。也没办法,表设计如此。
mysql> SELECT SEC_TO_TIME(AVG(times)) AS 'Running' FROM -> ( -> SELECT TIMESTAMPDIFF(SECOND,MIN(log_time),MAX(log_time)) AS times FROM log_ytt GROUP BY ids -> ) AS T;+---------------+| Running |+---------------+| 05:27:08.8333 | +---------------+1 row in set (0.00 sec)宽表:log_ytt_horizontal.
mysql> show create table log_ytt_horizontal;+------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+| Table| Create Table|+------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+| log_ytt_horizontal | CREATE TABLE `log_ytt_horizontal` (`ids` bigint(20) NOT NULL,`start_time` datetime DEFAULT NULL,`end_time` datetime DEFAULT NULL,PRIMARY KEY (`ids`)) ENGINE=InnoDB DEFAULT CHARSET=utf8 | +------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+1 row in set (0.00 sec)表记录数:
mysql> select * from log_ytt_horizontal;+------------+---------------------+---------------------+| ids| start_time| end_time|+------------+---------------------+---------------------+| 5130000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:34 | | 5220000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:45 | | 5310000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:33 | | 5400000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:53 | | 5490000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:55 | | 5580000001 | 2014-05-20 21:56:42 | 2014-05-21 03:20:24 | | 5670000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:58 | | 5760000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:07 | | 5850000001 | 2014-05-20 21:56:42 | 2014-05-21 03:20:18 | | 5940000001 | 2014-05-20 21:56:42 | 2014-05-21 03:20:00 | | 6030000001 | 2014-05-20 21:56:42 | 2014-05-21 03:20:00 | | 6120000001 | 2014-05-20 21:56:42 | 2014-05-21 03:20:09 | | 6210000001 | 2014-05-20 21:56:42 | 2014-05-21 03:25:45 | | 6300000001 | 2014-05-20 21:56:42 | 2014-05-21 03:28:13 | | 6390000001 | 2014-05-20 21:56:42 | 2014-05-21 03:25:37 | | 6480000001 | 2014-05-20 21:56:42 | 2014-05-21 03:25:05 | | 6570000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:34 | | 6660000001 | 2014-05-20 21:56:42 | 2014-05-21 03:28:07 | | 6750000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:17 | | 6840000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:17 | | 6930000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:59 | | 7020000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:32 | | 7110000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:46 | | 7200000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:45 | | 7290000001 | 2014-05-20 21:56:42 | 2014-05-21 03:20:02 | | 7380000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:48 | | 7470000001 | 2014-05-20 21:56:42 | 2014-05-21 03:26:14 | | 7560000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:45 | | 7650000001 | 2014-05-20 21:56:42 | 2014-05-21 03:28:37 | | 7740000001 | 2014-05-20 21:56:42 | 2014-05-21 03:28:26 | +------------+---------------------+---------------------+30 rows in set (0.00 sec)如果对这种稍微冗余一些的表来进行查询,那么对表的访问以及CPU的资源占用都达到了最低。
mysql> select sec_to_time(avg(timestampdiff(second,start_time,end_time))) as 'Running'from log_ytt_horizontal;+---------------+| Running |+---------------+| 05:27:08.8333 | +---------------+1 row in set (0.00 sec)

InnoDBBufferPool reduces disk I/O by caching data and indexing pages, improving database performance. Its working principle includes: 1. Data reading: Read data from BufferPool; 2. Data writing: After modifying the data, write to BufferPool and refresh it to disk regularly; 3. Cache management: Use the LRU algorithm to manage cache pages; 4. Reading mechanism: Load adjacent data pages in advance. By sizing the BufferPool and using multiple instances, database performance can be optimized.

Compared with other programming languages, MySQL is mainly used to store and manage data, while other languages such as Python, Java, and C are used for logical processing and application development. MySQL is known for its high performance, scalability and cross-platform support, suitable for data management needs, while other languages have advantages in their respective fields such as data analytics, enterprise applications, and system programming.

MySQL is worth learning because it is a powerful open source database management system suitable for data storage, management and analysis. 1) MySQL is a relational database that uses SQL to operate data and is suitable for structured data management. 2) The SQL language is the key to interacting with MySQL and supports CRUD operations. 3) The working principle of MySQL includes client/server architecture, storage engine and query optimizer. 4) Basic usage includes creating databases and tables, and advanced usage involves joining tables using JOIN. 5) Common errors include syntax errors and permission issues, and debugging skills include checking syntax and using EXPLAIN commands. 6) Performance optimization involves the use of indexes, optimization of SQL statements and regular maintenance of databases.

MySQL is suitable for beginners to learn database skills. 1. Install MySQL server and client tools. 2. Understand basic SQL queries, such as SELECT. 3. Master data operations: create tables, insert, update, and delete data. 4. Learn advanced skills: subquery and window functions. 5. Debugging and optimization: Check syntax, use indexes, avoid SELECT*, and use LIMIT.

MySQL efficiently manages structured data through table structure and SQL query, and implements inter-table relationships through foreign keys. 1. Define the data format and type when creating a table. 2. Use foreign keys to establish relationships between tables. 3. Improve performance through indexing and query optimization. 4. Regularly backup and monitor databases to ensure data security and performance optimization.

MySQL is an open source relational database management system that is widely used in Web development. Its key features include: 1. Supports multiple storage engines, such as InnoDB and MyISAM, suitable for different scenarios; 2. Provides master-slave replication functions to facilitate load balancing and data backup; 3. Improve query efficiency through query optimization and index use.

SQL is used to interact with MySQL database to realize data addition, deletion, modification, inspection and database design. 1) SQL performs data operations through SELECT, INSERT, UPDATE, DELETE statements; 2) Use CREATE, ALTER, DROP statements for database design and management; 3) Complex queries and data analysis are implemented through SQL to improve business decision-making efficiency.

The basic operations of MySQL include creating databases, tables, and using SQL to perform CRUD operations on data. 1. Create a database: CREATEDATABASEmy_first_db; 2. Create a table: CREATETABLEbooks(idINTAUTO_INCREMENTPRIMARYKEY, titleVARCHAR(100)NOTNULL, authorVARCHAR(100)NOTNULL, published_yearINT); 3. Insert data: INSERTINTObooks(title, author, published_year)VA


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

WebStorm Mac version
Useful JavaScript development tools

Atom editor mac version download
The most popular open source editor

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software