


Use matplotlib to realize the practical application of scatter plot of data set
Practical exercise: Use Matplotlib to draw scatter plots of data sets
Matplotlib is one of the commonly used drawing libraries in Python. It provides a wealth of functions that can be drawn Various types of charts. Among them, scatter plot is a commonly used data visualization method to show the relationship between two variables. This article will introduce how to use Matplotlib to draw a scatter plot of a data set, and attach specific code examples.
First, we need to install the Matplotlib library. You can use the pip command to execute the following statement to install:
pip install matplotlib
After the installation is complete, we can import the Matplotlib library and start drawing scatter plots.
import matplotlib.pyplot as plt # 模拟数据集 x = [1, 2, 3, 4, 5] y = [5, 4, 3, 2, 1] # 绘制散点图 plt.scatter(x, y) # 添加标题和标签 plt.title('Scatter Plot') plt.xlabel('X-axis') plt.ylabel('Y-axis') # 显示图像 plt.show()
The above code first imports the Matplotlib library, and then defines two lists x and y as simulated data sets. Next, we use the scatter function to draw a scatter plot, passing in x and y as parameters.
After drawing the image, we add the title and axis labels by calling the title, xlabel, and ylabel functions. Among them, the title function is used to add a chart title, and the xlabel and ylabel functions are used to add x-axis and y-axis labels respectively.
Finally, the image is displayed by calling the show function.
After running the code, a new window will pop up showing the scatter plot. The abscissa of each point in the figure represents the corresponding element in the x list, and the ordinate represents the corresponding element in the y list. The color and size of the dots can be customized according to actual needs.
In addition to simple scatter plots, we can also add other elements as needed, such as legends, color maps, etc. The following is a slightly more complex sample code:
import matplotlib.pyplot as plt import numpy as np # 模拟数据集 x = np.random.rand(100) y = np.random.rand(100) colors = np.random.rand(100) sizes = np.random.randint(10, 100, 100) # 绘制散点图 plt.scatter(x, y, c=colors, s=sizes, cmap='viridis') # 添加颜色条 plt.colorbar() # 添加标题和标签 plt.title('Scatter Plot with Colorbar') plt.xlabel('X-axis') plt.ylabel('Y-axis') # 显示图像 plt.show()
In the above code, we use the random module of the NumPy library to generate more random data, and specify the color and color of the points through the c and s parameters respectively. size. Through the cmap parameter, we can also add a colormap (colormap) to the color to make the image more colorful.
In addition, we also use the colorbar function to add a color bar to represent the range of color changes.
Through the above example code, we can flexibly use the Matplotlib library to draw various forms of scatter plots according to actual needs to achieve visual analysis of the data set.
To sum up, this article introduces how to use Matplotlib to draw scatter plots of data sets, and gives specific code examples. I hope readers can master the use of Matplotlib through practice and achieve richer and more personalized data visualization.
The above is the detailed content of Use matplotlib to realize the practical application of scatter plot of data set. For more information, please follow other related articles on the PHP Chinese website!

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

WebStorm Mac version
Useful JavaScript development tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

Dreamweaver Mac version
Visual web development tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.