search
HomeBackend DevelopmentPython TutorialIn-depth learning: Master the advanced techniques of matplotlib for drawing scatter plots

In-depth learning: Master the advanced techniques of matplotlib for drawing scatter plots

Advanced Guide: Mastering Matplotlib Advanced Scatter Plot Drawing Skills

Introduction:
Matplotlib is a powerful, flexible and easy-to-use drawing library that provides Rich graphics drawing functions. Among them, scatter plot is a commonly used data visualization method, which can more intuitively display the relationship between data. This article will introduce the techniques of drawing advanced scatter plots in Matplotlib and provide specific code examples.

1. Basic scatter plot drawing
Before using Matplotlib to draw a scatter plot, you need to import the relevant libraries and data. The following is a basic scatter plot drawing example:

import matplotlib.pyplot as plt
import numpy as np

# 生成随机数据
np.random.seed(1)
x = np.random.randn(100)
y = np.random.randn(100)

# 绘制散点图
plt.scatter(x, y)

# 添加标题和标签
plt.title("Basic Scatter Plot")
plt.xlabel("X")
plt.ylabel("Y")

# 显示图形
plt.show()

Running the above code will generate a basic scatter plot, in which the x and y axes represent the two dimensions of the data respectively.

2. Adjust the scatter point style
You can adjust the scatter diagram style by modifying parameters to make the graph more eye-catching. The following are some commonly used parameter settings:

# 绘制散点图(修改参数)
plt.scatter(x, y, c='red', s=100, alpha=0.5, marker='o', edgecolors='black')

# 添加标题和标签
plt.title("Customized Scatter Plot")
plt.xlabel("X")
plt.ylabel("Y")

# 显示图形
plt.show()

In the above code, we use the c parameter to set the color of the scatter points to red, and the s parameter to set the size of the scatter points. is 100, the alpha parameter sets the transparency of the scatter points to 0.5, the marker parameter sets the shape of the scatter points to a circle, the edgecolors parameter sets the boundary color of the scatter points is black.

3. Draw multiple sets of scatter plots
In some cases, we need to draw multiple sets of scatter plots at the same time to show the relationship between different data. The following is an example of drawing multiple sets of scatter plots:

# 生成随机数据
np.random.seed(1)
x1 = np.random.randn(100)
y1 = np.random.randn(100)
x2 = np.random.randn(100)
y2 = np.random.randn(100)

# 绘制散点图(多组)
plt.scatter(x1, y1, c='red', label='Group 1')
plt.scatter(x2, y2, c='blue', label='Group 2')

# 添加标题和标签
plt.title("Multiple Scatter Plots")
plt.xlabel("X")
plt.ylabel("Y")

# 添加图例
plt.legend()

# 显示图形
plt.show()

In the above code, we draw two sets of scatter plots by calling the scatter function multiple times, using red and blue respectively. express. Set the label of each set of scatter plots through the label parameter, and use the legend function to add a legend to the graph.

4. Use color mapping
When the data has a specific meaning, color can be represented as an additional dimension. The following is an example of using color mapping to draw a scatter plot:

# 生成随机数据
np.random.seed(1)
x = np.random.randn(100)
y = np.random.randn(100)
colors = np.random.rand(100)

# 绘制散点图(使用颜色映射)
plt.scatter(x, y, c=colors, cmap='viridis')

# 添加颜色映射说明
cbar = plt.colorbar()
cbar.set_label("Color")

# 添加标题和标签
plt.title("Scatter Plot with Color Mapping")
plt.xlabel("X")
plt.ylabel("Y")

# 显示图形
plt.show()

In the above code, we pass an array as the basis for color mapping through the c parameter, and then pass cmapThe parameter specifies the color mapping scheme used. Then use the colorbar function to add color mapping instructions.

Conclusion:
Through the introduction of this article, we have learned how to use Matplotlib to draw advanced scatter plots. We can use techniques such as adjusting styles, drawing multiple sets of scatter plots, and using color mapping to show the relationship between data. I hope this article has been helpful to you in data visualization.

The above is the detailed content of In-depth learning: Master the advanced techniques of matplotlib for drawing scatter plots. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
The Main Purpose of Python: Flexibility and Ease of UseThe Main Purpose of Python: Flexibility and Ease of UseApr 17, 2025 am 12:14 AM

Python's flexibility is reflected in multi-paradigm support and dynamic type systems, while ease of use comes from a simple syntax and rich standard library. 1. Flexibility: Supports object-oriented, functional and procedural programming, and dynamic type systems improve development efficiency. 2. Ease of use: The grammar is close to natural language, the standard library covers a wide range of functions, and simplifies the development process.

Python: The Power of Versatile ProgrammingPython: The Power of Versatile ProgrammingApr 17, 2025 am 12:09 AM

Python is highly favored for its simplicity and power, suitable for all needs from beginners to advanced developers. Its versatility is reflected in: 1) Easy to learn and use, simple syntax; 2) Rich libraries and frameworks, such as NumPy, Pandas, etc.; 3) Cross-platform support, which can be run on a variety of operating systems; 4) Suitable for scripting and automation tasks to improve work efficiency.

Learning Python in 2 Hours a Day: A Practical GuideLearning Python in 2 Hours a Day: A Practical GuideApr 17, 2025 am 12:05 AM

Yes, learn Python in two hours a day. 1. Develop a reasonable study plan, 2. Select the right learning resources, 3. Consolidate the knowledge learned through practice. These steps can help you master Python in a short time.

Python vs. C  : Pros and Cons for DevelopersPython vs. C : Pros and Cons for DevelopersApr 17, 2025 am 12:04 AM

Python is suitable for rapid development and data processing, while C is suitable for high performance and underlying control. 1) Python is easy to use, with concise syntax, and is suitable for data science and web development. 2) C has high performance and accurate control, and is often used in gaming and system programming.

Python: Time Commitment and Learning PacePython: Time Commitment and Learning PaceApr 17, 2025 am 12:03 AM

The time required to learn Python varies from person to person, mainly influenced by previous programming experience, learning motivation, learning resources and methods, and learning rhythm. Set realistic learning goals and learn best through practical projects.

Python: Automation, Scripting, and Task ManagementPython: Automation, Scripting, and Task ManagementApr 16, 2025 am 12:14 AM

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Python and Time: Making the Most of Your Study TimePython and Time: Making the Most of Your Study TimeApr 14, 2025 am 12:02 AM

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python: Games, GUIs, and MorePython: Games, GUIs, and MoreApr 13, 2025 am 12:14 AM

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Chat Commands and How to Use Them
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.