search
HomeTechnology peripheralsAIIntroducing a large domestic open source MoE model, its performance is comparable to Llama 2-7B, while the calculation amount is reduced by 60%

The open source MoE model finally welcomes its first domestic player!

Its performance is not inferior to the dense Llama 2-7B model, but the calculation amount is only 40%.

This model can be called a 19-sided warrior, especially in terms of math and coding capabilities, crushing Llama.

首个国产开源MoE大模型来了!性能媲美Llama 2-7B,计算量降低60%

It is the Deep Search team’s latest open source 16 billion parameter expert model DeepSeek MoE.

In addition to its excellent performance, DeepSeek MoE's main focus is to save computing power.

In this performance-activation parameter diagram, it "singles out" and occupies a large blank area in the upper left corner.

首个国产开源MoE大模型来了!性能媲美Llama 2-7B,计算量降低60%

Only one day after its release, the DeepSeek team’s tweet on X received a large number of retweets and attention.

首个国产开源MoE大模型来了!性能媲美Llama 2-7B,计算量降低60%

Maxime Labonne, a machine learning engineer at JP Morgan, also said after testing that the chat version of DeepSeek MoE performs slightly better than Microsoft's "small model" Phi-2.

首个国产开源MoE大模型来了!性能媲美Llama 2-7B,计算量降低60%

At the same time, DeepSeek MoE also received 300 stars on GitHub and appeared on the homepage of the Hugging Face text generation model rankings.

首个国产开源MoE大模型来了!性能媲美Llama 2-7B,计算量降低60%

So, what is the specific performance of DeepSeek MoE?

The amount of calculation is reduced by 60%

The current version of DeepSeek MoE has 16 billion parameters, and the actual number of activated parameters is about 2.8 billion.

Compared with its own 7B dense model, the performance of the two on the 19 data sets has different advantages and disadvantages, but the overall performance is relatively close.

Compared with Llama 2-7B, which is also a dense model, DeepSeek MoE also shows obvious advantages in mathematics, code, etc.

But the calculation amount of both dense models exceeds 180TFLOPs per 4k tokens, while DeepSeek MoE only has 74.4TFLOPs, which is only 40% of the two.

首个国产开源MoE大模型来了!性能媲美Llama 2-7B,计算量降低60%

Performance tests conducted at 2 billion parameters show that DeepSeek MoE can also achieve the performance of the same MoE model with 1.5 times the number of parameters with less calculation. GShard 2.8B has comparable or even better results.

首个国产开源MoE大模型来了!性能媲美Llama 2-7B,计算量降低60%

In addition, the Deep Seek team also fine-tuned the Chat version of DeepSeek MoE based on SFT, and its performance was also close to its own intensive version and Llama 2-7B.

首个国产开源MoE大模型来了!性能媲美Llama 2-7B,计算量降低60%

In addition, the DeepSeek team also revealed that a 145B version of the DeepSeek MoE model is under development.

Phased preliminary tests show that the 145B DeepSeek MoE has a huge lead over the GShard 137B, and can achieve equivalent performance to the dense version of the DeepSeek 67B model with 28.5% of the calculation amount.

After the research and development is completed, the team will also open source the 145B version.

首个国产开源MoE大模型来了!性能媲美Llama 2-7B,计算量降低60%

Behind the performance of these models is DeepSeek’s new self-developed MoE architecture.

Self-developed MoE new architecture

First of all, compared to the traditional MoE architecture, DeepSeek has a more fine-grained expert division.

When the total number of parameters is fixed, the traditional model can classify N experts, while DeepSeek may classify 2N experts.

At the same time, the number of experts selected each time a task is performed is twice that of the traditional model, so the overall number of parameters used remains the same, but the degree of freedom of selection increases.

This segmentation strategy allows for a more flexible and adaptive combination of activation experts, thereby improving the accuracy of the model on different tasks and the pertinence of knowledge acquisition.

首个国产开源MoE大模型来了!性能媲美Llama 2-7B,计算量降低60%

In addition to the differences in expert division, DeepSeek also innovatively introduces the "shared expert" setting.

These shared experts activate tokens for all inputs and are not affected by the routing module. The purpose is to capture and integrate common knowledge that is needed in different contexts.

By compressing these shared knowledge into shared experts, parameter redundancy among other experts can be reduced, thereby improving the parameter efficiency of the model.

The setting of shared experts helps other experts focus more on their unique knowledge areas, thereby improving the overall level of expert specialization.

首个国产开源MoE大模型来了!性能媲美Llama 2-7B,计算量降低60%

#Ablation experiment results show that both solutions play an important role in the "cost reduction and efficiency increase" of DeepSeek MoE.

首个国产开源MoE大模型来了!性能媲美Llama 2-7B,计算量降低60%

Paper address: https://arxiv.org/abs/2401.06066.

Reference link: https://mp.weixin.qq.com/s/T9-EGxYuHcGQgXArLXGbgg.

The above is the detailed content of Introducing a large domestic open source MoE model, its performance is comparable to Llama 2-7B, while the calculation amount is reduced by 60%. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
2023年机器学习的十大概念和技术2023年机器学习的十大概念和技术Apr 04, 2023 pm 12:30 PM

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

人工智能自动获取知识和技能,实现自我完善的过程是什么人工智能自动获取知识和技能,实现自我完善的过程是什么Aug 24, 2022 am 11:57 AM

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

超参数优化比较之网格搜索、随机搜索和贝叶斯优化超参数优化比较之网格搜索、随机搜索和贝叶斯优化Apr 04, 2023 pm 12:05 PM

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠​审校 | 孙淑娟​简介​通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。​顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

得益于OpenAI技术,微软必应的搜索流量超过谷歌得益于OpenAI技术,微软必应的搜索流量超过谷歌Mar 31, 2023 pm 10:38 PM

截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。 3月23日消息,外媒报道称,分析公司Similarweb的数据显示,在整合了OpenAI的技术后,微软旗下的必应在页面访问量方面实现了更多的增长。​​​​截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。这些数据是微软在与谷歌争夺生

荣耀的人工智能助手叫什么名字荣耀的人工智能助手叫什么名字Sep 06, 2022 pm 03:31 PM

荣耀的人工智能助手叫“YOYO”,也即悠悠;YOYO除了能够实现语音操控等基本功能之外,还拥有智慧视觉、智慧识屏、情景智能、智慧搜索等功能,可以在系统设置页面中的智慧助手里进行相关的设置。

人工智能在教育领域的应用主要有哪些人工智能在教育领域的应用主要有哪些Dec 14, 2020 pm 05:08 PM

人工智能在教育领域的应用主要有个性化学习、虚拟导师、教育机器人和场景式教育。人工智能在教育领域的应用目前还处于早期探索阶段,但是潜力却是巨大的。

30行Python代码就可以调用ChatGPT API总结论文的主要内容30行Python代码就可以调用ChatGPT API总结论文的主要内容Apr 04, 2023 pm 12:05 PM

阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。 阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。使用 Python 和 C

人工智能在生活中的应用有哪些人工智能在生活中的应用有哪些Jul 20, 2022 pm 04:47 PM

人工智能在生活中的应用有:1、虚拟个人助理,使用者可通过声控、文字输入的方式,来完成一些日常生活的小事;2、语音评测,利用云计算技术,将自动口语评测服务放在云端,并开放API接口供客户远程使用;3、无人汽车,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目标;4、天气预测,通过手机GPRS系统,定位到用户所处的位置,在利用算法,对覆盖全国的雷达图进行数据分析并预测。

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.