search
HomeTechnology peripheralsAINVIDIA, Mila, and Caltech jointly release multi-modal molecular structure-text model of LLM combined with drug discovery

NVIDIA, Mila, and Caltech jointly release multi-modal molecular structure-text model of LLM combined with drug discovery

Author | Liu Shengchao

Editor | Kaixia

Starting in 2021, the combination of big language and multi-modality has swept the machine learning research community .

With the development of large models and multi-modal applications, can we apply these techniques to drug discovery? And, can these natural language textual descriptions bring new perspectives to this challenging problem? The answer is yes, and we are optimistic about it

Recently, Canada’s Montreal Institute for Learning Algorithms (Mila), NVIDIA Research, University of Illinois at Urbana-Champaign (UIUC), Princeton University and California Institute of Technology The college's research team jointly learns the chemical structure and text description of molecules through comparative learning strategies, and proposes a multi-modal molecular structure-text model MoleculeSTM.

The research is titled "Multi-modal molecule structure–text model for text-based retrieval and editing" and was published in "Nature Machine Intelligence" on December 18, 2023.

NVIDIA, Mila, and Caltech jointly release multi-modal molecular structure-text model of LLM combined with drug discovery

Paper link: https://www.nature.com/articles/s42256-023-00759-6 needs to be rewritten

Among them, Dr. Liu Shengchao is the first author, and Professor Anima Anandkumar of NVIDIA Research is the corresponding author. Nie Weili, Wang Chengpeng, Lu Jiarui, Qiao Zhuoran, Liu Ling, Tang Jian and Xiao Chaowei are co-authors.

This project was conducted by Dr. Liu Shengchao after joining NVIDIA Research in March 2022, under the guidance of Teachers Nie Weili, Teacher Tang Jian, Teacher Xiao Chaowei and Teacher Anima Anandkumar.

Dr. Liu Shengchao said: "Our motivation was to conduct preliminary exploration of LLM and drug discovery, and finally proposed MoleculeSTM."

NVIDIA, Mila, and Caltech jointly release multi-modal molecular structure-text model of LLM combined with drug discovery

For docking The text is designed to guide molecule editing

The core idea of ​​MoleculeSTM is very simple and direct, that is, the description of molecules can be divided into two categories: internal chemical structure and external function description. Here we use a contrastive pre-training method to align and connect these two types of information. The specific diagram is shown in the figure below

NVIDIA, Mila, and Caltech jointly release multi-modal molecular structure-text model of LLM combined with drug discovery

#Illustration: MoleculeSTM flow chart.

This alignment of MoleculeSTM has a very good property: when there are some tasks that are difficult to solve in the chemical space, we can transfer them to the natural language space. And natural language tasks will be relatively easier to solve due to its characteristics. Based on this, we designed a wide variety of downstream tasks to verify its effectiveness. Below we discuss several insights in detail.

Features of Natural Language and Large Language Models

In MoleculeSTM, we pose a problem for the first time. We take advantage of the open vocabulary and combinatorial characteristics of natural language

  • Open vocabulary means that we can express all current human knowledge in natural language, so new knowledge that will appear in the future can also be expressed in modern language. Some language is used to summarize and summarize. For example, if a new protein appears, we hope to describe its function in natural language.
  • Compositionality means that in natural language, a complex concept can be jointly expressed by several simple concepts. This is very helpful for tasks such as multi-attribute editing: it is very difficult to edit molecules to meet multiple properties at the same time in chemical space, but we can express multiple properties very easily in natural language.

In our recent work ChatDrug (https://arxiv.org/abs/2305.18090), we explored the conversational properties between natural language and large language models, which are of interest to Friends can go and take a look

Task design derived from features refers to the design of planning and arranging tasks based on the characteristics of the product or system

For existing language- For image tasks, they can be viewed as art-related tasks, such as generating pictures or text. That is, their results are varied and uncertain. However, scientific discoveries are scientific problems that usually have relatively clear results, such as the generation of small molecules with specific functions. This brings greater challenges in task design

In MoleculeSTM (Appendix B), we proposed two guidelines:

  • The first task we consider is to be able to perform calculations and simulations to obtain results. In the future, wet-lab verification results will be considered, but this is not within the scope of the current work.
  • Secondly, we only consider problems with ambiguous results. Specific examples include making a certain molecule more water-soluble or penetrable. Some problems have clear results, such as adding a certain functional group to a certain position in a molecule. We believe that such tasks are simpler and more straightforward for drug and chemistry experts. So it can be used as a proof-of-concept task in the future, but it will not become the main task target.

From this we designed three broad categories of tasks:

  1. Zero-shot structured text retrieval;
  2. Zero-shot text-based molecule editing ;
  3. Molecular property prediction.

We will focus on the second task in the following sections

The qualitative results of molecular editing are restated as follows:

This The task is to input a molecule and a natural language description (such as additional attributes) at the same time, and then hope to output a new molecule described in a composite language text. This is text-guided lead optimization.

The specific method is to use the already trained molecule generation model and our pre-trained MoleculeSTM to learn the alignment of the two latent spaces (latent space), thereby performing latent space interpolation, and then generate it through decoding target molecule. The process diagram is as follows.

NVIDIA, Mila, and Caltech jointly release multi-modal molecular structure-text model of LLM combined with drug discovery

The content that needs to be rewritten is: a two-stage process diagram of zero-sample text-guided molecule editing

Here we show several groups of molecule editing The qualitative results are restated as follows: (Result details of the remaining downstream tasks can be found in the original paper). We mainly consider four types of molecular editing tasks:

  • Single attribute editing: Editing a single attribute, such as water solubility, penetrability, and the number of hydrogen bond donors and acceptors.
  • Composite attribute editing: Edit multiple attributes at the same time, such as water solubility and the number of hydrogen bond donors.
  • Drug similarity editor: (Appendix D.5) makes the input molecule and the target molecule drug look closer.
  • Neighbor search for patented drugs: For drugs that have been patented, drugs in the process are often reported together. Here we are combining the intermediate drug with the natural language description to see if it can generate the final target drug.
  • binding affinity editor: We selected several ChEMBL assays as targets, with the goal of having higher binding affinity between the input molecules and the targets.

NVIDIA, Mila, and Caltech jointly release multi-modal molecular structure-text model of LLM combined with drug discovery

#Result display: zero-sample text-guided molecule editing. (Note: This is a direct translation of the original sentence into Chinese.)

What is more interesting is the last type of task. We found that MoleculeSTM can indeed perform matching based on the text description of the target protein. Optimization of lead compounds for ligands. (Note: The protein structure information here will only be known after evaluation.)

The above is the detailed content of NVIDIA, Mila, and Caltech jointly release multi-modal molecular structure-text model of LLM combined with drug discovery. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:机器之心. If there is any infringement, please contact admin@php.cn delete
What is Few-Shot Prompting? - Analytics VidhyaWhat is Few-Shot Prompting? - Analytics VidhyaApr 22, 2025 am 09:13 AM

Few-Shot Prompting: A Powerful Technique in Machine Learning In the realm of machine learning, achieving accurate responses with minimal data is paramount. Few-shot prompting offers a highly effective solution, enabling AI models to perform specific

What is Temperature in prompt engineering? - Analytics VidhyaWhat is Temperature in prompt engineering? - Analytics VidhyaApr 22, 2025 am 09:11 AM

Prompt Engineering: Mastering the "Temperature" Parameter for AI Text Generation Prompt engineering is crucial when working with large language models (LLMs) like GPT-4. A key parameter in prompt engineering is "temperature," whi

Are You At Risk Of AI Agency Decay? Take The Test To Find OutAre You At Risk Of AI Agency Decay? Take The Test To Find OutApr 21, 2025 am 11:31 AM

This article explores the growing concern of "AI agency decay"—the gradual decline in our ability to think and decide independently. This is especially crucial for business leaders navigating the increasingly automated world while retainin

How to Build an AI Agent from Scratch? - Analytics VidhyaHow to Build an AI Agent from Scratch? - Analytics VidhyaApr 21, 2025 am 11:30 AM

Ever wondered how AI agents like Siri and Alexa work? These intelligent systems are becoming more important in our daily lives. This article introduces the ReAct pattern, a method that enhances AI agents by combining reasoning an

Revisiting The Humanities In The Age Of AIRevisiting The Humanities In The Age Of AIApr 21, 2025 am 11:28 AM

"I think AI tools are changing the learning opportunities for college students. We believe in developing students in core courses, but more and more people also want to get a perspective of computational and statistical thinking," said University of Chicago President Paul Alivisatos in an interview with Deloitte Nitin Mittal at the Davos Forum in January. He believes that people will have to become creators and co-creators of AI, which means that learning and other aspects need to adapt to some major changes. Digital intelligence and critical thinking Professor Alexa Joubin of George Washington University described artificial intelligence as a “heuristic tool” in the humanities and explores how it changes

Understanding LangChain Agent FrameworkUnderstanding LangChain Agent FrameworkApr 21, 2025 am 11:25 AM

LangChain is a powerful toolkit for building sophisticated AI applications. Its agent architecture is particularly noteworthy, allowing developers to create intelligent systems capable of independent reasoning, decision-making, and action. This expl

What are the Radial Basis Functions Neural Networks?What are the Radial Basis Functions Neural Networks?Apr 21, 2025 am 11:13 AM

Radial Basis Function Neural Networks (RBFNNs): A Comprehensive Guide Radial Basis Function Neural Networks (RBFNNs) are a powerful type of neural network architecture that leverages radial basis functions for activation. Their unique structure make

The Meshing Of Minds And Machines Has ArrivedThe Meshing Of Minds And Machines Has ArrivedApr 21, 2025 am 11:11 AM

Brain-computer interfaces (BCIs) directly link the brain to external devices, translating brain impulses into actions without physical movement. This technology utilizes implanted sensors to capture brain signals, converting them into digital comman

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools