


Common problems and solutions in Python multi-threaded programming
- Introduction
With the increase in computer processing speed, multi-threaded programming has become an important factor in improving program performance. and efficiency. In Python, multi-threaded programming can make full use of the advantages of multi-core processors to help us achieve parallel computing and improve the responsiveness of the program. However, multi-threaded programming also has some common problems, such as thread safety, locks, etc. This article will introduce common problems in Python multi-threaded programming and give corresponding solutions and code examples. - Thread safety
In multi-threaded programming, thread safety is an important issue. When multiple threads access shared resources at the same time, if there is no correct synchronization mechanism, data inconsistency or program crash will result.
Solution:
(1) Use lock (Lock): Lock is the most commonly used synchronization mechanism, which can ensure that only one thread can access shared resources at the same time. The following is a sample code using locks:
import threading # 创建一个锁对象 lock = threading.Lock() def func(): lock.acquire() # 获取锁 try: # 进行需要保护的操作 pass finally: lock.release() # 释放锁
(2) Using condition variables (Condition): Condition variables are used to achieve communication and synchronization between threads. It allows the thread to wait for a certain condition to occur. When the condition is met, the thread will be awakened and continue execution. The following is a sample code using condition variables:
import threading # 创建一个条件变量对象 condition = threading.Condition() def consumer(): condition.acquire() # 获取条件变量 while not condition_fullfilled(): condition.wait() # 等待条件满足 # 执行需要的操作 condition.release() # 释放条件变量 def producer(): condition.acquire() # 获取条件变量 # 计算并设置条件 condition.notify_all() # 唤醒等待的线程 condition.release() # 释放条件变量
- Inter-thread communication issues
In multi-thread programming, if multiple threads need to coordinate and communicate, some mechanisms need to be used to achieve it. Message passing and data sharing between threads.
Solution:
(1) Use queue (Queue): Queue is a thread-safe data structure that can realize message passing and data sharing between multiple threads. The following is a sample code that uses queues for inter-thread communication:
import threading import queue # 创建一个队列对象 q = queue.Queue() def producer(): while True: # 生产数据 q.put(data) # 将数据放入队列 def consumer(): while True: # 消费数据 data = q.get() # 从队列取出数据
(2) Using shared variables: Shared variables are data structures that multiple threads can access at the same time. In order to ensure that access to shared variables does not cause data inconsistency, locks or other synchronization mechanisms need to be used to protect shared variables. Here is a sample code that uses shared variables for inter-thread communication:
import threading # 共享变量 shared_data = [] # 创建一个锁对象 lock = threading.Lock() def producer(): while True: # 生产数据 lock.acquire() # 获取锁 shared_data.append(data) # 修改共享变量 lock.release() # 释放锁 def consumer(): while True: # 消费数据 lock.acquire() # 获取锁 data = shared_data.pop(0) # 修改共享变量 lock.release() # 释放锁
- GIL (Global Interpreter Lock)
Python's interpreter (CPython) uses the GIL to ensure that only one Threads can execute Python bytecode. This lock prevents multi-threaded programs from taking full advantage of multi-core processors.
Solution:
(1) Use multiple processes: Multiple processes can overcome the limitations of GIL. Each process has its own Python interpreter and GIL. By using the multiprocess module, multiple Python processes can be executed in parallel. The following is a sample code that uses multiple processes for parallel computing:
import multiprocessing def calc(): # 执行计算 pass if __name__ == '__main__': # 创建进程池对象 pool = multiprocessing.Pool() # 执行计算 results = pool.map(calc, [data1, data2, data3]) # 关闭进程池 pool.close() pool.join()
(2) Using third-party libraries: There are some third-party libraries that can bypass GIL restrictions, such as NumPy and Pandas. These libraries use C language extensions to perform calculations and do not require GIL protection. The following is a sample code using NumPy for parallel computing:
import numpy as np def calc(): # 执行计算 pass # 创建一个NumPy数组 data = np.array([data1, data2, data3]) # 并行计算 results = np.apply_along_axis(calc, 0, data)
- Summary
This article introduces common problems and corresponding solutions in Python multi-threaded programming, including thread safety and inter-thread communication and GIL restrictions. By properly handling these issues, we can fully unleash the potential of multi-threaded programming and improve program performance and efficiency.
Of course, multi-threaded programming is not a panacea and is suitable for certain specific scenarios. In practical applications, we also need to choose the most appropriate programming method to solve the problem according to the specific situation.
References:
- https://docs.python.org/3.9/library/threading.html
- https://docs.python.org /3.9/library/queue.html
- https://docs.python.org/3.9/library/multiprocessing.html
- https://numpy.org/doc/
The above is just a basic introduction to common problems and solutions in Python multi-threaded programming. Specific applications require further study and practice based on actual needs. I hope this article can help readers with problems encountered in multi-threaded programming.
The above is the detailed content of Common problems with Python multi-threaded programming and how to deal with them. For more information, please follow other related articles on the PHP Chinese website!

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

In this tutorial you'll learn how to handle error conditions in Python from a whole system point of view. Error handling is a critical aspect of design, and it crosses from the lowest levels (sometimes the hardware) all the way to the end users. If y

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.
