search
HomeBackend DevelopmentPython TutorialHow to read Excel files using Pandas

How to read Excel files using Pandas

Jan 04, 2024 pm 02:29 PM
pandas (data processing library)Read (data import)excel (spreadsheet file format)

How to read Excel files using Pandas

Pandas is a commonly used data processing and analysis tool in Python. It provides a series of convenient methods to read and process Excel files. This article will introduce several common methods for Pandas to read Excel files, and provide specific code examples to help readers better understand and apply them.

1. Use Pandas’ read_excel() function to read Excel files
Pandas provides the read_excel() function, which can directly read Excel files and convert them into DataFrame objects. The basic usage of this function is as follows:

import pandas as pd

# 读取Excel文件
df = pd.read_excel('filename.xlsx', sheetname='sheet1')

Where, 'filename.xlsx' is the name of the Excel file to be read, which can be a relative path or an absolute path. The sheetname parameter is used to specify the name of the worksheet to be read, which can be a specific worksheet name or index.

For the convenience of demonstration, we create a sample Excel file named data.xlsx with the following content:
Name Age Gender
Zhang San 25 Male
Li Si 30 Female
王五28 Male

Next, we use the read_excel() function to read and print out the data:

import pandas as pd

# 读取Excel文件
df = pd.read_excel('data.xlsx', sheetname='Sheet1')

# 打印数据
print(df)

The running results are as follows:
Name Age Gender
0 Zhang San 25 Male
1 Li Si 30 Female
2 Wang Wu 28 Male

After reading the Excel file, various data processing and analysis can be performed on the DataFrame object.

2. Read data from multiple worksheets
If an Excel file contains multiple worksheets, you can read data from the specified worksheet by specifying the sheetname parameter. At this time, the read_excel() function will return a dictionary with the worksheet name as the key and the corresponding DataFrame object as the value. An example is as follows:

import pandas as pd

# 读取Excel文件的所有工作表
dfs = pd.read_excel('filename.xlsx', sheetname=None)

# 打印所有工作表的数据
for sheetname, df in dfs.items():
    print(sheetname, ":
", df)

3. Specify column range to read data
Sometimes, we may only want to read part of the column data in the Excel file. At this time, you can limit the range of columns to be read by specifying the usecols parameter. Examples are as follows:

import pandas as pd

# 读取Excel文件的指定列范围
df = pd.read_excel('filename.xlsx', usecols='A:C')

# 打印数据
print(df)

4. Handling null values
When reading Excel files, you often encounter situations that contain null values. Pandas provides the fillna() function to handle this situation conveniently. An example is as follows:

import pandas as pd

# 读取Excel文件并处理空值
df = pd.read_excel('filename.xlsx')
df.fillna(value=0, inplace=True)

# 打印数据
print(df)

In the above example, the fillna() function is used to fill the null value with 0, and inplace=True means to modify it directly on the original DataFrame object.

The above are several common methods and sample codes for Pandas to read Excel files. Readers can choose the appropriate method according to their own needs to further explore and apply the data processing and analysis functions of Pandas.

The above is the detailed content of How to read Excel files using Pandas. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python vs. C  : Understanding the Key DifferencesPython vs. C : Understanding the Key DifferencesApr 21, 2025 am 12:18 AM

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Python vs. C  : Which Language to Choose for Your Project?Python vs. C : Which Language to Choose for Your Project?Apr 21, 2025 am 12:17 AM

Choosing Python or C depends on project requirements: 1) If you need rapid development, data processing and prototype design, choose Python; 2) If you need high performance, low latency and close hardware control, choose C.

Reaching Your Python Goals: The Power of 2 Hours DailyReaching Your Python Goals: The Power of 2 Hours DailyApr 20, 2025 am 12:21 AM

By investing 2 hours of Python learning every day, you can effectively improve your programming skills. 1. Learn new knowledge: read documents or watch tutorials. 2. Practice: Write code and complete exercises. 3. Review: Consolidate the content you have learned. 4. Project practice: Apply what you have learned in actual projects. Such a structured learning plan can help you systematically master Python and achieve career goals.

Maximizing 2 Hours: Effective Python Learning StrategiesMaximizing 2 Hours: Effective Python Learning StrategiesApr 20, 2025 am 12:20 AM

Methods to learn Python efficiently within two hours include: 1. Review the basic knowledge and ensure that you are familiar with Python installation and basic syntax; 2. Understand the core concepts of Python, such as variables, lists, functions, etc.; 3. Master basic and advanced usage by using examples; 4. Learn common errors and debugging techniques; 5. Apply performance optimization and best practices, such as using list comprehensions and following the PEP8 style guide.

Choosing Between Python and C  : The Right Language for YouChoosing Between Python and C : The Right Language for YouApr 20, 2025 am 12:20 AM

Python is suitable for beginners and data science, and C is suitable for system programming and game development. 1. Python is simple and easy to use, suitable for data science and web development. 2.C provides high performance and control, suitable for game development and system programming. The choice should be based on project needs and personal interests.

Python vs. C  : A Comparative Analysis of Programming LanguagesPython vs. C : A Comparative Analysis of Programming LanguagesApr 20, 2025 am 12:14 AM

Python is more suitable for data science and rapid development, while C is more suitable for high performance and system programming. 1. Python syntax is concise and easy to learn, suitable for data processing and scientific computing. 2.C has complex syntax but excellent performance and is often used in game development and system programming.

2 Hours a Day: The Potential of Python Learning2 Hours a Day: The Potential of Python LearningApr 20, 2025 am 12:14 AM

It is feasible to invest two hours a day to learn Python. 1. Learn new knowledge: Learn new concepts in one hour, such as lists and dictionaries. 2. Practice and exercises: Use one hour to perform programming exercises, such as writing small programs. Through reasonable planning and perseverance, you can master the core concepts of Python in a short time.

Python vs. C  : Learning Curves and Ease of UsePython vs. C : Learning Curves and Ease of UseApr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software