Home > Article > Backend Development > Comprehensive analysis of numpy library functions
numpy (Numerical Python) is a library for scientific computing in Python, which provides efficient numerical operation functions. In the numpy library, there are a large number of functions for us to use. This article will analyze in detail the usage of some common functions in the numpy library and give corresponding code examples.
1. Create array function
import numpy as np # 创建一维数组 a = np.array([1, 2, 3, 4, 5]) print(a) # 创建二维数组 b = np.array([[1, 2, 3], [4, 5, 6]]) print(b) # 创建多维数组 c = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]) print(c)
import numpy as np # 创建一个全为0的一维数组 a = np.zeros(5) print(a) # 创建一个全为0的二维数组 b = np.zeros((2, 3)) print(b)
import numpy as np # 创建一个全为1的一维数组 a = np.ones(5) print(a) # 创建一个全为1的二维数组 b = np.ones((2, 3)) print(b)
2. Mathematical functions
import numpy as np a = np.array([0, np.pi/2, np.pi]) b = np.sin(a) print(b)
import numpy as np a = np.array([0, np.pi/2, np.pi]) b = np.cos(a) print(b)
import numpy as np a = np.array([1, 2, 3]) b = np.exp(a) print(b)
3. Statistical function
import numpy as np a = np.array([1, 2, 3, 4, 5]) b = np.mean(a) print(b)
import numpy as np a = np.array([1, 2, 3, 4, 5]) b = np.max(a) print(b)
import numpy as np a = np.array([1, 2, 3, 4, 5]) b = np.min(a) print(b)
4. Array operation function
import numpy as np a = np.array([1, 2, 3, 4, 5, 6]) b = np.reshape(a, (2, 3)) print(b)
import numpy as np a = np.array([[1, 2, 3], [4, 5, 6]]) b = np.transpose(a) print(b)
The above are only some of the functions in the numpy library. There are many other functions that can be used for array calculations, statistics, operations, etc. I hope this article can help readers better understand the function list in the numpy library.
The above is the detailed content of Comprehensive analysis of numpy library functions. For more information, please follow other related articles on the PHP Chinese website!