search
HomeBackend DevelopmentPython TutorialEnhance code clarity with Python named tuples

Python's collections module has a feature called "Namedtuple", a "Namedtuple" is a tuple with named elements to make the code more expressive. Just like a dictionary in Python, a "Namedtuple" allows us to access elements using the members of the tuple instead of the index.

Enhance code clarity with Python named tuples

Use Python named tuples to enhance code clarity

Learn how to create, destructure, and optimize memory Use for cleaner, more readable code. Explore real-world examples and best practices.

Python's collection module has a feature called "Namedtuple", a "Namedtuple" is a tuple with named elements to make the code more expressive. Just like a dictionary in Python, a "Namedtuple" allows us to access elements using the members of the tuple instead of the index.

Creating a named tuple

To create a named tuple, we must use the function "namedtuple" in the collection module.

from collections import namedtuple

# Define a employee tuple that has fields id, name and location.
Employee = namedtuple ('Employee', 'id name location')

# Create instances of Employee
employee1 = Employee (id=10, name='John Doe', location='Atlanta')
employee2 = Employee (id=11, name='Mick', location='Dallas')

Accessing elements from Namedtuple

"Namedtuple" provides a dual mechanism for element access. First, elements can be accessed via attribute names, and the second mechanism uses traditional numeric indexing.

print(f"{employee1.name} - {employee1.location}") # John Doe - Atlanta
print(f"{employee2.name} - {employee2.location}") # Mick – Dallas

Elements can also be accessed using numeric indexes.

print(f"{employee1[1]} - {employee1[2]}") # John Doe - Atlanta
print(f"{employee2[1]} - {employee2[2]}") # Mick – Dallas

Immutability

Immutability is a fundamental property of "Namedtuples", inherited from regular tuples. This means that once a field's value is set during creation, it cannot be modified.

try:
    employee1.name = 'David'
except AttributeError as e:
    print(f"AttributeError: {e}") # AttributeError: can't set attribute

Methods

"Namedtuple" not only provides a clean and readable way to structure data, but also provides some useful methods that enhance the functionality of "Namedtuple" .

a) _asdict(): The _asdict() method returns named tuples in dictionary form, providing a convenient way to convert "Namedtuples" into a format compatible with other data structures.

employee1._asdict() # {'id': 10, 'name': 'John Doe', 'location': 'Atlanta'}

b) _replace(): The _replace() method creates a new instance of "Namedtuple" with the specified fields replaced with new values. This approach is critical to maintaining immutability while allowing modification.

employee1_modified = employee1._replace(location='DFW')
employee1_modified # Employee(id=10, name='John Doe', location='DFW')

c) _make(): The _make(iterable) method creates a new instance of "namedtuple" from an iterable object. For example, we can create a Namedtuple from a list using the _make() method.

employee_list = [21, 'Bob','Gallup']
Employee._make(employee_list) # Employee(id=21, name='Bob', location='Gallup')

Unpacking Namedtuple

Through the unpacking process, Python’s “Namedtuples” enable you to assign their values ​​to individual variables in a single, concise statement.

id, name, location = employee1
print(f"id: {id}, name: {name}, location:{location}")

Convert "Namedtuples" to a different data structure

You can use the list() constructor to convert named tuples to a list. Here's an example:

list(employee1) # [10, 'John Doe', 'Atlanta']

You can convert a named tuple to a dictionary using the "_asdict()" method, which returns an OrderedDict which you can convert to a regular dictionary. Here is an example:

dict(employee1._asdict()) # {'id': 10, 'name': 'John Doe', 'location': 'Atlanta'}

Advantages of using "Namedtuple"

Readability: "Namedtuples" make the code more readable by giving elements meaningful names Readability, thereby eliminating the need for index-based access.

Variable: Like regular tuples, "Namedtuples" are immutable. Once created, its value cannot be changed.

Memory Efficiency: "Namedtuples" are memory efficient, taking up less space than equivalent classes. It's important to note that the memory efficiency gained with Namedtuples is more common in scenarios involving a large number of instances or when working with large data sets.

Lightweight data structure: Great for creating simple classes without custom methods.

Data Storage: Convenient for storing structured data, especially when complete classes are not required.

API and database records: Used to represent records returned from the database or data received from the API.

"Namedtuple" in Python is ideal for scenarios where you need a simple, immutable data structure with named fields, such as

Configuration settings: Use "Namedtuple" for There are configuration settings for named fields for clarity and ease of use.

Database record: "Namedtuple" can represent a database record, clarifying which field corresponds to which column in the table.

Command line parsing: Use "Namedtuple" to store parsed command line parameters, providing a clear structure for input parameters.

Named Constants: "Namedtuple" can be used to represent named constants in code, providing a clear and readable way to define constant values.

"Namedtuples" excel in these scenarios by providing clarity, readability, and immutability, making them a valuable tool for concisely structured data.

The above is the detailed content of Enhance code clarity with Python named tuples. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:dzone. If there is any infringement, please contact admin@php.cn delete
详细讲解Python之Seaborn(数据可视化)详细讲解Python之Seaborn(数据可视化)Apr 21, 2022 pm 06:08 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

详细了解Python进程池与进程锁详细了解Python进程池与进程锁May 10, 2022 pm 06:11 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

Python自动化实践之筛选简历Python自动化实践之筛选简历Jun 07, 2022 pm 06:59 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

归纳总结Python标准库归纳总结Python标准库May 03, 2022 am 09:00 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于标准库总结的相关问题,下面一起来看一下,希望对大家有帮助。

Python数据类型详解之字符串、数字Python数据类型详解之字符串、数字Apr 27, 2022 pm 07:27 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

分享10款高效的VSCode插件,总有一款能够惊艳到你!!分享10款高效的VSCode插件,总有一款能够惊艳到你!!Mar 09, 2021 am 10:15 AM

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

详细介绍python的numpy模块详细介绍python的numpy模块May 19, 2022 am 11:43 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

python中文是什么意思python中文是什么意思Jun 24, 2019 pm 02:22 PM

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use