


In-depth discussion of practical application cases of wait and notify in Java: Detailed explanation of inter-thread communication
Inter-thread communication in Java: Detailed explanation of the practical application scenarios of wait and notify
In multi-thread programming, communication between threads is an important technology. Java provides two basic methods of inter-thread communication, namely using the wait and notify methods of objects. This article will analyze the actual application scenarios of wait and notify in detail and give specific code examples.
- Introduction
In multi-threaded programming, communication between threads refers to the cooperation between multiple threads to complete specific tasks. Threads often need to share variables, data, or resources, and a mechanism is needed to ensure synchronization and order. Java provides a way to implement inter-thread communication based on object monitors, that is, using the wait and notify methods of the object.
- Introduction to wait and notify methods
The wait method is a method in the Object class, which puts the current thread into a waiting state and releases the object's lock. This method needs to be called in a synchronized code block or synchronized method, and can only be called by the thread holding the object lock. The wait method is usually used in conjunction with the notify method to implement the thread's waiting and waking up mechanism.
The notify method is a method in the Object class, which is used to wake up waiting threads. The notify method needs to be called in a synchronized code block or synchronized method, and can only be called by the thread holding the object lock. The notify method randomly wakes up a waiting thread and puts it into the ready state.
- Practical application scenarios of wait and notify
The following are several common usage scenarios, showing how to use the wait and notify methods to achieve inter-thread communication.
3.1 Producer-Consumer Model
The producer-consumer model is a classic thread synchronization problem, in which one or more threads act as producers, generate data, and Put it into the shared buffer; one or more threads act as consumers, take the data out of the buffer and process it. Under this model, communication is required between producers and consumers to ensure that producers wait when the buffer is full and consumers wait when the buffer is empty.
The following is a simple example that demonstrates how to use the wait and notify methods to implement the producer-consumer model:
public class ProducerConsumerExample { private List<Integer> buffer = new ArrayList<>(); private int maxSize = 5; public synchronized void produce() throws InterruptedException { while (buffer.size() == maxSize) { wait(); } Random random = new Random(); int value = random.nextInt(100); buffer.add(value); System.out.println("Produced: " + value); notifyAll(); } public synchronized void consume() throws InterruptedException { while (buffer.size() == 0) { wait(); } int value = buffer.remove(0); System.out.println("Consumed: " + value); notifyAll(); } }
In this example, the ProducerConsumerExample class implements the producer and consumer logic. In the produce method, if the buffer is full, the thread enters the waiting state (calling the wait method) until a consumer consumes data and calls the notifyAll method to wake up the waiting producer thread. Similarly, in the consume method, if the buffer is empty, the thread enters the waiting state until a producer produces data and calls the notifyAll method to wake up the waiting consumer thread.
3.2 Thread collaboration
Sometimes, multiple threads need to be executed in a specific order. After one thread completes a specific task, it needs to notify the next thread to continue execution. In this scenario, you can also use the wait and notify methods to achieve thread collaboration.
The following is a simple example that demonstrates how to use the wait and notify methods to achieve thread collaboration:
public class ThreadCooperationExample { private boolean isTask1Completed = false; public synchronized void task1() throws InterruptedException { while (!isTask1Completed) { wait(); } System.out.println("Task 1 completed"); } public synchronized void task2() { System.out.println("Task 2 started"); // 执行任务2的代码 isTask1Completed = true; notify(); } }
In this example, the ThreadCooperationExample class implements two tasks task1 and task2. In task1, the thread will continuously check the status of isTask1Completed. If it is false, it will enter the waiting state (call the wait method) until task2 sets isTask1Completed to true and then calls the notify method to wake up the waiting task1 thread.
- Summary
This article introduces the practical application scenarios of wait and notify methods in detail, and gives specific code examples. As we can see, the wait and notify methods can realize communication and cooperation between threads in multi-threaded programming, ensuring the order and synchronization of threads. In actual development, according to different needs, we can flexibly use the wait and notify methods to write efficient and reliable multi-threaded applications.
The above is the detailed content of In-depth discussion of practical application cases of wait and notify in Java: Detailed explanation of inter-thread communication. For more information, please follow other related articles on the PHP Chinese website!

JVM handles operating system API differences through JavaNativeInterface (JNI) and Java standard library: 1. JNI allows Java code to call local code and directly interact with the operating system API. 2. The Java standard library provides a unified API, which is internally mapped to different operating system APIs to ensure that the code runs across platforms.

modularitydoesnotdirectlyaffectJava'splatformindependence.Java'splatformindependenceismaintainedbytheJVM,butmodularityinfluencesapplicationstructureandmanagement,indirectlyimpactingplatformindependence.1)Deploymentanddistributionbecomemoreefficientwi

BytecodeinJavaistheintermediaterepresentationthatenablesplatformindependence.1)Javacodeiscompiledintobytecodestoredin.classfiles.2)TheJVMinterpretsorcompilesthisbytecodeintomachinecodeatruntime,allowingthesamebytecodetorunonanydevicewithaJVM,thusfulf

JavaachievesplatformindependencethroughtheJavaVirtualMachine(JVM),whichexecutesbytecodeonanydevicewithaJVM.1)Javacodeiscompiledintobytecode.2)TheJVMinterpretsandexecutesthisbytecodeintomachine-specificinstructions,allowingthesamecodetorunondifferentp

Platform independence in JavaGUI development faces challenges, but can be dealt with by using Swing, JavaFX, unifying appearance, performance optimization, third-party libraries and cross-platform testing. JavaGUI development relies on AWT and Swing, which aims to provide cross-platform consistency, but the actual effect varies from operating system to operating system. Solutions include: 1) using Swing and JavaFX as GUI toolkits; 2) Unify the appearance through UIManager.setLookAndFeel(); 3) Optimize performance to suit different platforms; 4) using third-party libraries such as ApachePivot or SWT; 5) conduct cross-platform testing to ensure consistency.

Javadevelopmentisnotentirelyplatform-independentduetoseveralfactors.1)JVMvariationsaffectperformanceandbehavioracrossdifferentOS.2)NativelibrariesviaJNIintroduceplatform-specificissues.3)Filepathsandsystempropertiesdifferbetweenplatforms.4)GUIapplica

Java code will have performance differences when running on different platforms. 1) The implementation and optimization strategies of JVM are different, such as OracleJDK and OpenJDK. 2) The characteristics of the operating system, such as memory management and thread scheduling, will also affect performance. 3) Performance can be improved by selecting the appropriate JVM, adjusting JVM parameters and code optimization.

Java'splatformindependencehaslimitationsincludingperformanceoverhead,versioncompatibilityissues,challengeswithnativelibraryintegration,platform-specificfeatures,andJVMinstallation/maintenance.Thesefactorscomplicatethe"writeonce,runanywhere"


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Dreamweaver Mac version
Visual web development tools

Notepad++7.3.1
Easy-to-use and free code editor

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool
