


Asynchronous Coroutine Development Practice: Optimizing the Speed of Uploading and Downloading Large Files
Asynchronous Coroutine Development Practice: Optimizing the Speed of Uploading and Downloading Large Files
With the development and popularization of the Internet, file transmission has become the norm. But when the transferred files become larger and larger, traditional file uploading and downloading methods will encounter many difficulties. In order to optimize the transmission speed of large files and improve user experience, we can implement it through asynchronous coroutines. This article will share how to use asynchronous coroutine technology to optimize the upload and download speed of large files, and provide specific code examples.
1. Introduction to asynchronous coroutine technology
Asynchronous coroutine is essentially a programming model. Its characteristic is that when blocking occurs, it can immediately release control of the current thread, hand over control to other tasks to continue execution, and wait until the blocking is over before returning to execution, thereby realizing switching between multiple tasks to achieve better results. Efficient processing effect.
Common asynchronous coroutine technologies include asyncio in Python, Callback and Promise in Node.js, etc. Different languages and technologies may have different implementation methods, but essentially they are all designed to better utilize computer resources to improve concurrency and processing efficiency.
2. Optimize the speed of large file uploads
- Use chunked upload
When uploading large files, transfer the entire file to the server at one time This will inevitably lead to network congestion and slow transmission speeds. To avoid this problem, large files can be uploaded into multiple chunks. Each chunk is an independent data packet and can be uploaded in parallel to speed up the upload.
Using asynchronous coroutine technology, you can easily implement block uploads and transmit multiple blocks of data in parallel to achieve more efficient upload operations. The following is the specific code implementation.
import aiohttp import asyncio async def upload_chunk(session, url, file, offset, size): headers = {'Content-Length': str(size), 'Content-Range': f'bytes {offset}-{offset+size-1}/{file_size}'} data = file.read(size) async with session.put(url, headers=headers, data=data) as resp: return await resp.json() async def upload_file_with_chunks(session, url, file): file_size = os.path.getsize(file.name) chunk_size = 1024 * 1024 * 5 #每块数据的大小为5MB offset = 0 tasks = [] while offset < file_size: size = chunk_size if offset+chunk_size < file_size else file_size-offset tasks.append(upload_chunk(session, url, file, offset, size)) offset += size return await asyncio.gather(*tasks) async def main(): async with aiohttp.ClientSession() as session: url = 'http://example.com/upload' file = open('large_file.mp4', 'rb') result = await upload_file_with_chunks(session, url, file) print(result) asyncio.run(main())
In this code, we divide the entire file into data blocks with a size of 5MB, and then use the asyncio.gather()
method to concurrently execute the tasks of uploading each data block. to speed up uploads. The idea of chunked uploading also applies to file downloading. Please see the next section for details.
- Multi-threaded upload
In addition to using multi-threaded upload, you can also use multi-threading to upload large files. Using multi-threading can make fuller use of your computer's multi-core resources, thereby speeding up file uploads. The following is the specific code implementation.
import threading import requests class MultiPartUpload(object): def __init__(self, url, file_path, num_thread=4): self.url = url self.file_path = file_path self.num_thread = num_thread self.file_size = os.path.getsize(self.file_path) self.chunk_size = self.file_size//num_thread self.threads = [] self.lock = threading.Lock() def upload(self, i): start = i * self.chunk_size end = start + self.chunk_size - 1 headers = {"Content-Range": "bytes %s-%s/%s" % (start, end, self.file_size), "Content-Length": str(self.chunk_size)} data = open(self.file_path, 'rb') data.seek(start) resp = requests.put(self.url, headers=headers, data=data.read(self.chunk_size)) self.lock.acquire() print("Part %d status: %s" % (i, resp.status_code)) self.lock.release() def run(self): for i in range(self.num_thread): t = threading.Thread(target=self.upload, args=(i,)) self.threads.append(t) for t in self.threads: t.start() for t in self.threads: t.join() if __name__ == '__main__': url = 'http://example.com/upload' file = 'large_file.mp4' uploader = MultiPartUpload(url, file) uploader.run()
In this code, we use the threading
module in the Python standard library to implement multi-threaded upload. Divide the entire file into multiple data blocks, and each thread is responsible for uploading one of the blocks, thereby achieving concurrent uploads. Use a lock mechanism to protect thread safety during concurrent uploads.
3. Optimize the speed of large file downloads
In addition to uploading, downloading large files is also a very common requirement, and optimization can also be achieved through asynchronous coroutines.
- Bulk download
Similar to chunked upload, chunked download divides the entire file into several chunks, each chunk is downloaded independently, and multiple chunks of data are transmitted in parallel. This speeds up downloads. The specific code implementation is as follows:
import aiohttp import asyncio import os async def download_chunk(session, url, file, offset, size): headers = {'Range': f'bytes={offset}-{offset+size-1}'} async with session.get(url, headers=headers) as resp: data = await resp.read() file.seek(offset) file.write(data) return len(data) async def download_file_with_chunks(session, url, file): async with session.head(url) as resp: file_size = int(resp.headers.get('Content-Length')) chunk_size = 1024 * 1024 * 5 #每块数据的大小为5MB offset = 0 tasks = [] while offset < file_size: size = chunk_size if offset+chunk_size < file_size else file_size-offset tasks.append(download_chunk(session, url, file, offset, size)) offset += size return await asyncio.gather(*tasks) async def main(): async with aiohttp.ClientSession() as session: url = 'http://example.com/download/large_file.mp4' file = open('large_file.mp4', 'wb+') await download_file_with_chunks(session, url, file) asyncio.run(main())
In this code, we use the aiohttp
library to perform parallel downloads of asynchronous coroutines. Similarly, divide the entire file into 5MB data blocks, and then use the asyncio.gather()
method to execute the task of downloading each data block concurrently to speed up file downloading.
- Multi-threaded download
In addition to downloading in chunks, you can also use multi-threaded downloading to download large files. The specific code implementation is as follows:
import threading import requests class MultiPartDownload(object): def __init__(self, url, file_path, num_thread=4): self.url = url self.file_path = file_path self.num_thread = num_thread self.file_size = requests.get(self.url, stream=True).headers.get('Content-Length') self.chunk_size = int(self.file_size) // self.num_thread self.threads = [] self.lock = threading.Lock() def download(self, i): start = i * self.chunk_size end = start + self.chunk_size - 1 if i != self.num_thread - 1 else '' headers = {"Range": "bytes=%s-%s" % (start, end)} data = requests.get(self.url, headers=headers, stream=True) with open(self.file_path, 'rb+') as f: f.seek(start) f.write(data.content) self.lock.acquire() print("Part %d Downloaded." % i) self.lock.release() def run(self): for i in range(self.num_thread): t = threading.Thread(target=self.download, args=(i,)) self.threads.append(t) for t in self.threads: t.start() for t in self.threads: t.join() if __name__ == '__main__': url = 'http://example.com/download/large_file.mp4' file = 'large_file.mp4' downloader = MultiPartDownload(url, file) downloader.run()
In this code, we also use the threading
module in the Python standard library to implement multi-threaded downloading. The entire file is divided into multiple data blocks, and each thread is responsible for downloading one of the blocks, thereby achieving concurrent downloading. The lock mechanism is also used to protect thread safety during concurrent downloads.
4. Summary
This article introduces how to use asynchronous coroutine technology to optimize the upload and download speed of large files. By blocking and parallel processing in upload and download operations, the efficiency of file transfer can be quickly improved. Whether it is in asynchronous coroutines, multi-threading, distributed systems and other fields, it has a wide range of applications. Hope this article helps you!
The above is the detailed content of Asynchronous Coroutine Development Practice: Optimizing the Speed of Uploading and Downloading Large Files. For more information, please follow other related articles on the PHP Chinese website!

What’s still popular is the ease of use, flexibility and a strong ecosystem. 1) Ease of use and simple syntax make it the first choice for beginners. 2) Closely integrated with web development, excellent interaction with HTTP requests and database. 3) The huge ecosystem provides a wealth of tools and libraries. 4) Active community and open source nature adapts them to new needs and technology trends.

PHP and Python are both high-level programming languages that are widely used in web development, data processing and automation tasks. 1.PHP is often used to build dynamic websites and content management systems, while Python is often used to build web frameworks and data science. 2.PHP uses echo to output content, Python uses print. 3. Both support object-oriented programming, but the syntax and keywords are different. 4. PHP supports weak type conversion, while Python is more stringent. 5. PHP performance optimization includes using OPcache and asynchronous programming, while Python uses cProfile and asynchronous programming.

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

PHP remains important in the modernization process because it supports a large number of websites and applications and adapts to development needs through frameworks. 1.PHP7 improves performance and introduces new features. 2. Modern frameworks such as Laravel, Symfony and CodeIgniter simplify development and improve code quality. 3. Performance optimization and best practices further improve application efficiency.

PHPhassignificantlyimpactedwebdevelopmentandextendsbeyondit.1)ItpowersmajorplatformslikeWordPressandexcelsindatabaseinteractions.2)PHP'sadaptabilityallowsittoscaleforlargeapplicationsusingframeworkslikeLaravel.3)Beyondweb,PHPisusedincommand-linescrip

PHP type prompts to improve code quality and readability. 1) Scalar type tips: Since PHP7.0, basic data types are allowed to be specified in function parameters, such as int, float, etc. 2) Return type prompt: Ensure the consistency of the function return value type. 3) Union type prompt: Since PHP8.0, multiple types are allowed to be specified in function parameters or return values. 4) Nullable type prompt: Allows to include null values and handle functions that may return null values.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

WebStorm Mac version
Useful JavaScript development tools

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Zend Studio 13.0.1
Powerful PHP integrated development environment