


This article summarizes the classic methods and effect comparison of feature enhancement & personalization in CTR estimation.
In CTR estimation, the mainstream method uses feature embedding MLP, where features are very critical. However, for the same features, the representation is the same in different samples. This way of inputting to the downstream model will limit the expressive ability of the model.
In order to solve this problem, a series of related work has been proposed in the field of CTR estimation, called feature enhancement module. The feature enhancement module corrects the output results of the embedding layer based on different samples to adapt to the feature representation of different samples and improve the expression ability of the model.
Recently, Fudan University and Microsoft Research Asia jointly released a review on feature enhancement work, comparing the implementation methods and effects of different feature enhancement modules. Now, let’s introduce the implementation methods of several feature enhancement modules, as well as the related comparative experiments conducted in this article
Title of the paper: A Comprehensive Summarization and Evaluation of Feature Refinement Modules for CTR Prediction
Download address: https://arxiv.org/pdf/2311.04625v1.pdf
1. Feature enhancement modeling idea
Feature enhancement module is designed to improve the CTR prediction model The expressive ability of the Embedding layer enables differentiation of representations of the same features in different samples. The feature enhancement module can be expressed by the following unified formula, input the original Embedding, and after passing a function, generate the personalized Embedding of this sample.
Picture
The general idea of this method is that after obtaining the initial embedding of each feature, use the representation of the sample itself to embedding the feature Make a transformation to get the personalized embedding of the current sample. Here we introduce some classic feature enhancement module modeling methods.
2. Classic method of feature enhancement
An Input-aware Factorization Machine for Sparse Prediction (IJCAI 2019) This article adds a reweight layer after the embedding layer, and inputs the initial embedding of the sample into A vector representing the sample is obtained in an MLP, and softmax is used for normalization. Each element after Softmax corresponds to a feature, representing the importance of this feature. This softmax result is multiplied by the initial embedding of each corresponding feature to achieve feature embedding weighting at sample granularity.
Picture
FiBiNET: Click-through rate prediction model combining feature importance and second-order feature interaction (RecSys 2019) also adopts a similar idea. The model learns a personalized weight of a feature for each sample. The whole process is divided into three steps: squeeze, extraction and reweight. In the squeezing stage, the embedding vector of each feature is obtained as a statistical scalar through the pooling method. In the extraction stage, these scalars are input into a multilayer perceptron (MLP) to obtain the weight of each feature. Finally, these weights are multiplied by the embedding vector of each feature to obtain the weighted embedding result, which is equivalent to filtering feature importance at the sample level
Picture
A Dual Input-aware Factorization Machine for CTR Prediction (IJCAI 2020) is similar to the previous article, and also uses self-attention to enhance features. The whole is divided into two modules: vector-wise and bit-wise. Vector-wise treats the embedding of each feature as an element in the sequence and inputs it into the Transformer to obtain the fused feature representation; the bit-wise part uses multi-layer MLP to map the original features. After the input results of the two parts are added, the weight of each feature element is obtained, and multiplied by each bit of the corresponding original feature to obtain the enhanced feature.
Image
GateNet: Enhanced gated deep network for click-through rate prediction (2020) utilizes the initial embedding vector of each feature through an MLP and sigmoid The function generates its independent feature weight scores while using an MLP to map all features into bitwise weight scores, combining the two to weight the input features. In addition to the feature layer, in the hidden layer of MLP, a similar method is also used to weight the input of each hidden layer
Picture
Interpretable Click-Through Rate Prediction through Hierarchical Attention (WSDM 2020) also uses self-attention to achieve feature conversion, but adds the generation of high-order features. Hierarchical self-attention is used here. Each layer of self-attention takes the output of the previous layer of self-attention as input. Each layer adds a first-order high-order feature combination to achieve hierarchical multi-order feature extraction. Specifically, after each layer performs self-attention, the generated new feature matrix is passed through softmax to obtain the weight of each feature. The new features are weighted according to the weights of the original features, and then a dot product is performed with the original features to achieve an increase of one feature. Characteristic intersection of levels.
Picture
ContextNet: A Click-Through Rate Prediction Framework Using Contextual information to Refine Feature Embedding (2021) is a similar approach, using an MLP to All features are mapped into a dimension of each feature embedding size, and the original features are scaled. The article uses personalized MLP parameters for each feature. In this way, each feature is enhanced using other features in the sample as upper and lower bits.
Picture
Enhancing CTR Prediction with Context-Aware Feature Representation Learning (SIGIR 2022) uses self-attention for feature enhancement, for a set of input features , each feature has a different degree of influence on other features. Through self-attention, self-attention is performed on the embedding of each feature to achieve information interaction between features within the sample. In addition to the interaction between features, the article also uses MLP for bit-level information interaction. The new embedding generated above will be merged with the original embedding through a gate network to obtain the final refined feature representation.
Picture
3. Experimental results
After comparing the effects of various feature enhancement methods, we came to the overall conclusion: Among the many feature enhancement modules, GFRL, FRNet-V, and FRNetB perform best and are better than other feature enhancement methods
## picture
The above is the detailed content of This article summarizes the classic methods and effect comparison of feature enhancement & personalization in CTR estimation.. For more information, please follow other related articles on the PHP Chinese website!

ChatGPT Security Enhanced: Two-Stage Authentication (2FA) Configuration Guide Two-factor authentication (2FA) is required as a security measure for online platforms. This article will explain in an easy-to-understand manner the 2FA setup procedure and its importance in ChatGPT. This is a guide for those who want to use ChatGPT safely. Click here for OpenAI's latest AI agent, OpenAI Deep Research ⬇️ [ChatGPT] What is OpenAI Deep Research? A thorough explanation of how to use it and the fee structure! table of contents ChatG
![[For businesses] ChatGPT training | A thorough introduction to 8 free training options, subsidies, and examples!](https://img.php.cn/upload/article/001/242/473/174704251871181.jpg?x-oss-process=image/resize,p_40)
The use of generated AI is attracting attention as the key to improving business efficiency and creating new businesses. In particular, OpenAI's ChatGPT has been adopted by many companies due to its versatility and accuracy. However, the shortage of personnel who can effectively utilize ChatGPT is a major challenge in implementing it. In this article, we will explain the necessity and effectiveness of "ChatGPT training" to ensure successful use of ChatGPT in companies. We will introduce a wide range of topics, from the basics of ChatGPT to business use, specific training programs, and how to choose them. ChatGPT training improves employee skills

Improved efficiency and quality in social media operations are essential. Particularly on platforms where real-time is important, such as Twitter, requires continuous delivery of timely and engaging content. In this article, we will explain how to operate Twitter using ChatGPT from OpenAI, an AI with advanced natural language processing capabilities. By using ChatGPT, you can not only improve your real-time response capabilities and improve the efficiency of content creation, but you can also develop marketing strategies that are in line with trends. Furthermore, precautions for use
![[For Mac] Explaining how to get started and how to use the ChatGPT desktop app!](https://img.php.cn/upload/article/001/242/473/174704239752855.jpg?x-oss-process=image/resize,p_40)
ChatGPT Mac desktop app thorough guide: from installation to audio functions Finally, ChatGPT's desktop app for Mac is now available! In this article, we will thoroughly explain everything from installation methods to useful features and future update information. Use the functions unique to desktop apps, such as shortcut keys, image recognition, and voice modes, to dramatically improve your business efficiency! Installing the ChatGPT Mac version of the desktop app Access from a browser: First, access ChatGPT in your browser.

When using ChatGPT, have you ever had experiences such as, "The output stopped halfway through" or "Even though I specified the number of characters, it didn't output properly"? This model is very groundbreaking and not only allows for natural conversations, but also allows for email creation, summary papers, and even generate creative sentences such as novels. However, one of the weaknesses of ChatGPT is that if the text is too long, input and output will not work properly. OpenAI's latest AI agent, "OpenAI Deep Research"

ChatGPT is an innovative AI chatbot developed by OpenAI. It not only has text input, but also features voice input and voice conversation functions, allowing for more natural communication. In this article, we will explain how to set up and use the voice input and voice conversation functions of ChatGPT. Even when you can't take your hands off, ChatGPT responds and responds with audio just by talking to you, which brings great benefits in a variety of situations, such as busy business situations and English conversation practice. A detailed explanation of how to set up the smartphone app and PC, as well as how to use each.

The shortcut to success! Effective job change strategies using ChatGPT In today's intensifying job change market, effective information gathering and thorough preparation are key to success. Advanced language models like ChatGPT are powerful weapons for job seekers. In this article, we will explain how to effectively utilize ChatGPT to improve your job hunting efficiency, from self-analysis to application documents and interview preparation. Save time and learn techniques to showcase your strengths to the fullest, and help you make your job search a success. table of contents Examples of job hunting using ChatGPT Efficiency in self-analysis: Chat

Mind maps are useful tools for organizing information and coming up with ideas, but creating them can take time. Using ChatGPT can greatly streamline this process. This article will explain in detail how to easily create mind maps using ChatGPT. Furthermore, through actual examples of creation, we will introduce how to use mind maps on various themes. Learn how to effectively organize and visualize your ideas and information using ChatGPT. OpenAI's latest AI agent, OpenA


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Notepad++7.3.1
Easy-to-use and free code editor

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool
