


With the development of large language models (LLM), practitioners face more challenges. How to avoid harmful replies from LLM? How to quickly delete copyright-protected content in training data? How to reduce LLM hallucinations (false facts)? How to quickly iterate LLM after data policy changes? These issues are critical to the safe and trustworthy deployment of LLM under the general trend of increasingly mature legal and ethical compliance requirements for artificial intelligence.
The current mainstream solution in the industry is to fine-tune the comparison data (positive samples and negative samples) by using reinforcement learning to align LLM (alignment) to ensure that the output of LLM is consistent with human Expectations and values. However, this alignment process is often limited by data collection and computing resources
ByteDance proposed a method for LLM to perform forgetting learning for alignment. This article studies how to perform "forgetting" operations on LLM, that is, forgetting harmful behaviors or machine unlearning (Machine Unlearning). The author shows the obvious effect of forgetting learning on three LLM alignment scenarios: (1) removing harmful output; (2) removing infringement protection content; (3) eliminating the big language LLM illusion
Forgetting learning has three advantages: (1) Only negative samples (harmful samples) are needed, and the negative samples are much simpler to collect than the positive samples (high-quality manual handwriting output) required by RLHF (such as red team testing or user report); (2) low computational cost; (3) forgetting learning is particularly effective if it is known which training samples lead to harmful behavior of LLM.
The author's argument is that for practitioners with limited resources, they should prioritize stopping producing harmful outputs rather than trying to pursue overly idealized outputs and forgetting that learning is a a convenient method. Despite having only negative samples, research shows that forget learning can still achieve better alignment performance than reinforcement learning and high-temperature high-frequency algorithms using only 2% of the computation time
- Paper address: https://arxiv.org/abs/2310.10683
- Code address: https: //github.com/kevinyaobytedance/llm_unlearn
Usage scenarios
With limited resources, we can Take this approach to maximize your advantages. When we don’t have the budget to hire people to write high-quality samples or the computing resources are insufficient, we should prioritize stopping LLM from producing harmful output rather than trying to make it produce beneficial output
harmful output caused by The damage cannot be compensated by beneficial output. If a user asks an LLM 100 questions and the answers he gets are harmful, he will lose trust, no matter how many helpful answers the LLM provides later. The expected output of harmful problems may be spaces, special characters, meaningless strings, etc. In short, it must be harmless text
shows three successful cases of LLM forgetting learning: (1) Stop generating harmful replies (please rewrite the content into Chinese, the original sentence does not need to appear); this is similar to the RLHF scenario, but the difference is that the goal of this method is to generate harmless replies, not helpful replies. This is the best that can be expected when there are only negative samples. (2) After training with infringing data, LLM successfully deleted the data and could not retrain LLM due to cost factors; (3) LLM successfully forgot the "illusion"
Please rewrite the content into Chinese, the original sentence does not need to appear
Method
In the fine-tuning step t, The update of LLM is as follows:
The first loss is gradient descent (gradient descent), the purpose is to forget harmful samples:
is a harmful prompt (prompt),
is the corresponding harmful reply. The overall loss reversely increases the loss of harmful samples, which makes LLM "forget" harmful samples.
The second loss is for random mismatches, which requires LLM to predict irrelevant replies in the presence of harmful cues. This is similar to label smoothing [2] in classification. The purpose is to make LLM better forget harmful output on harmful prompts. At the same time, experiments have proven that this method can improve the output performance of LLM under normal circumstances
The third loss is to maintain performance on normal tasks:
Similar to RLHF, calculating KL divergence on pre-trained LLM can better maintain LLM performance.
Additionally, all gradient ascent and descent is done only on the output (y) part, not on the tip-output pair (x, y) like RLHF.
Application scenarios: forgetting harmful content, etc.
This article uses PKU-SafeRLHF data as forgotten data, TruthfulQA as normal data, the content of Figure 2 The need for rewriting shows the harmful rate of LLM output on unlearned harmful cues after forgetting learning. The methods used in this article are GA (Gradient Ascent and GA Mismatch: Gradient Ascent Random Mismatch). The harmful rate after forgetting learning is close to zero.
The content of the second picture needs to be rewritten
The third picture shows harmful prompts (not Forgotten) output, which has not been seen before. Even for harmful cues that have not been forgotten, the harmful rate of LLM is close to zero, which proves that LLM forgets not only specific samples, but generalizes to content containing harmful concepts
Figure 3
The performance of LLM on normal samples remains similar to that before forgetting, and it also has the following characteristics
Table 1 shows the generated samples. It can be seen that under the harmful prompt, the samples generated by LLM are meaningless strings, that is, harmless output.
Table 1
In other scenarios, such as forgetting infringing content and forgetting hallucinations, this method The original application text is described in detail
RLHF comparison
What needs to be rewritten Yes: The second table shows the comparison between this method and RLHF. RLHF uses positive examples, while the forgetting learning method only uses negative examples, so the method is at a disadvantage at the beginning. But even so, forgetting learning can still achieve alignment performance similar to RLHF
The content that needs to be rewritten is: the second table
What needs to be rewritten: The fourth picture shows the comparison of calculation times. This method only requires 2% of the calculation time of RLHF.
Content that needs to be rewritten: The fourth picture
Even with only negative samples, the method using forgetting learning can achieve a harmless rate comparable to RLHF and only use 2% of the computing power. Therefore, if the goal is to stop outputting harmful content, forgetting learning is more efficient than RLHF
Conclusion
This study is the first of its kind Exploring forgetting learning on LLM. The findings show that learning to forget is a promising approach to alignment, especially when practitioners are under-resourced. The paper shows three situations: forgetting learning can successfully delete harmful replies, delete infringing content and eliminate illusions. Research shows that even with only negative samples, forgetting learning can still achieve similar alignment effects to RLHF using only 2% of the calculation time of RLHF
The above is the detailed content of 2% of the computing power of RLHF is used to eliminate harmful output of LLM, and Byte releases forgetful learning technology. For more information, please follow other related articles on the PHP Chinese website!

1 前言在发布DALL·E的15个月后,OpenAI在今年春天带了续作DALL·E 2,以其更加惊艳的效果和丰富的可玩性迅速占领了各大AI社区的头条。近年来,随着生成对抗网络(GAN)、变分自编码器(VAE)、扩散模型(Diffusion models)的出现,深度学习已向世人展现其强大的图像生成能力;加上GPT-3、BERT等NLP模型的成功,人类正逐步打破文本和图像的信息界限。在DALL·E 2中,只需输入简单的文本(prompt),它就可以生成多张1024*1024的高清图像。这些图像甚至

Wav2vec 2.0 [1],HuBERT [2] 和 WavLM [3] 等语音预训练模型,通过在多达上万小时的无标注语音数据(如 Libri-light )上的自监督学习,显著提升了自动语音识别(Automatic Speech Recognition, ASR),语音合成(Text-to-speech, TTS)和语音转换(Voice Conversation,VC)等语音下游任务的性能。然而这些模型都没有公开的中文版本,不便于应用在中文语音研究场景。 WenetSpeech [4] 是

“Making large models smaller”这是很多语言模型研究人员的学术追求,针对大模型昂贵的环境和训练成本,陈丹琦在智源大会青源学术年会上做了题为“Making large models smaller”的特邀报告。报告中重点提及了基于记忆增强的TRIME算法和基于粗细粒度联合剪枝和逐层蒸馏的CofiPruning算法。前者能够在不改变模型结构的基础上兼顾语言模型困惑度和检索速度方面的优势;而后者可以在保证下游任务准确度的同时实现更快的处理速度,具有更小的模型结构。陈丹琦 普

由于复杂的注意力机制和模型设计,大多数现有的视觉 Transformer(ViT)在现实的工业部署场景中不能像卷积神经网络(CNN)那样高效地执行。这就带来了一个问题:视觉神经网络能否像 CNN 一样快速推断并像 ViT 一样强大?近期一些工作试图设计 CNN-Transformer 混合架构来解决这个问题,但这些工作的整体性能远不能令人满意。基于此,来自字节跳动的研究者提出了一种能在现实工业场景中有效部署的下一代视觉 Transformer——Next-ViT。从延迟 / 准确性权衡的角度看,

3月27号,Stability AI的创始人兼首席执行官Emad Mostaque在一条推文中宣布,Stable Diffusion XL 现已可用于公开测试。以下是一些事项:“XL”不是这个新的AI模型的官方名称。一旦发布稳定性AI公司的官方公告,名称将会更改。与先前版本相比,图像质量有所提高与先前版本相比,图像生成速度大大加快。示例图像让我们看看新旧AI模型在结果上的差异。Prompt: Luxury sports car with aerodynamic curves, shot in a

人工智能就是一个「拼财力」的行业,如果没有高性能计算设备,别说开发基础模型,就连微调模型都做不到。但如果只靠拼硬件,单靠当前计算性能的发展速度,迟早有一天无法满足日益膨胀的需求,所以还需要配套的软件来协调统筹计算能力,这时候就需要用到「智能计算」技术。最近,来自之江实验室、中国工程院、国防科技大学、浙江大学等多达十二个国内外研究机构共同发表了一篇论文,首次对智能计算领域进行了全面的调研,涵盖了理论基础、智能与计算的技术融合、重要应用、挑战和未来前景。论文链接:https://spj.scien

译者 | 李睿审校 | 孙淑娟近年来, Transformer 机器学习模型已经成为深度学习和深度神经网络技术进步的主要亮点之一。它主要用于自然语言处理中的高级应用。谷歌正在使用它来增强其搜索引擎结果。OpenAI 使用 Transformer 创建了著名的 GPT-2和 GPT-3模型。自从2017年首次亮相以来,Transformer 架构不断发展并扩展到多种不同的变体,从语言任务扩展到其他领域。它们已被用于时间序列预测。它们是 DeepMind 的蛋白质结构预测模型 AlphaFold

说起2010年南非世界杯的最大网红,一定非「章鱼保罗」莫属!这只位于德国海洋生物中心的神奇章鱼,不仅成功预测了德国队全部七场比赛的结果,还顺利地选出了最终的总冠军西班牙队。不幸的是,保罗已经永远地离开了我们,但它的「遗产」却在人们预测足球比赛结果的尝试中持续存在。在艾伦图灵研究所(The Alan Turing Institute),随着2022年卡塔尔世界杯的持续进行,三位研究员Nick Barlow、Jack Roberts和Ryan Chan决定用一种AI算法预测今年的冠军归属。预测模型图


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

Atom editor mac version download
The most popular open source editor

Dreamweaver Mac version
Visual web development tools

Dreamweaver CS6
Visual web development tools

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software
