Rapid engineering is an important aspect to fully realize the potential of artificial intelligence language models. By refining and optimizing the instructions given to these models, we can achieve more accurate and contextual responses. In this article, we explore the principles and techniques of just-in-time engineering, as well as its limitations and potential applications.
Principles of Rapid Engineering
1. Write clear and specific instructions
Success in just-in-time engineering starts with providing clear and specific instructions instruct. Clarity does not necessarily mean short description. Being clear about the desired output helps the model understand the task more accurately. For example, tell the LLA that they are experts in the field you are asking for.
2. Use delimiters and structured formats
Using delimiters (such as triple quotes) prevents hint injection and ensures that the AI model only focuses on the intended task. The structured format of the response, such as JSON or XML, helps guide the model efficiently.
3. Few-sample and single-sample inference technology
Using one-time or several-time inference technology, artificial intelligence models can learn from a limited number of examples, allowing They are more versatile in generating relevant responses. The idea is to give successful examples of completing a task and then ask the model to perform the task.
Zero-sample reasoning: No examples; we ask for answers directly.
-
One-shot reasoning: We show the IA an example of how to answer.
4. Allow time to think about the model
Give the model the necessary time to thoroughly think about the problem at hand Task.
- Strategy 1: Specify task steps: Provide structured guidance for the model by clearly outlining the steps required to complete the task.
- Strategy 2: Encourage independent problem solving: Instruct the model to independently derive solutions before jumping to conclusions. This technique is called thought chain prompting with reasoning steps.
- Ask a question: First ask a specific question or question.
- Request initial model calculation: Ask the AI to perform an initial calculation or inference step.
- Compare user and model responses: Finally, the user’s response is evaluated by comparing it to the AI’s initial output to determine its correctness.
This approach ensures a thorough solution to the problem and improves the performance of the model.
5. Use iterative rapid development to solve problems
By iteratively analyzing model responses and refining prompts, we can effectively obtain more desired outputs.
Model Limitations and Solutions
1. Illusions and processing of plausible but false statements
Sometimes, artificial Intelligent models generate responses that sound reasonable but are actually incorrect. To resolve this issue, relevant information should first be provided and a response should be based on this information.
2. Handling outdated information
Systems are trained by a specific date, so information about dates or people may not be accurate.
3. Complex mathematical operations
When asked to perform complex calculations, artificial intelligence models may provide approximate results. Providing specific instructions to perform precise mathematical operations can alleviate this problem.
4. Use temperature parameters to control output
By adjusting the temperature parameter, we can influence the level of randomness in the model output, resulting in a more focused or more creative response.
Applications of Just-In-Time Engineering
1. Summarize Text
By instructing an artificial intelligence model to generate a concise text summary, we Can effectively extract important information from lengthy documents.
2. Infer emotions and sentiments
Just-in-time engineering enables AI models to accurately identify emotions and sentiments expressed in text.
3. Convert text formats
Artificial intelligence models can translate, change tone, and convert text formats, thus facilitating a variety of applications.
4. Expanding text content
You can instruct the AI model to expand a specific topic or complete story based on the context provided.
Ensure the output is safe and reliable
1. Audit and check for harmful content
The AI model response should be checked for potential harmful content to ensure responsible and ethical use.
2. Fact-check and ensure accuracy
Check AI-generated responses against factual information to prevent the spread of false or misleading data.
3. Use scoring criteria and expert feedback to evaluate model responses
Use scoring criteria and expert feedback to enable the model to continuously learn and improve its response.
Conclusion
Effective hint engineering is a powerful tool for unlocking the true potential of artificial intelligence language models. By following the principles and techniques outlined in this article, we can harness the power of artificial intelligence responsibly and achieve more accurate and contextual results. Continuous learning and improvement in just-in-time engineering will undoubtedly shape the future of artificial intelligence technology and its applications in various fields.
The above is the detailed content of Master rapid engineering of artificial intelligence language models. For more information, please follow other related articles on the PHP Chinese website!

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠审校 | 孙淑娟简介通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。 3月23日消息,外媒报道称,分析公司Similarweb的数据显示,在整合了OpenAI的技术后,微软旗下的必应在页面访问量方面实现了更多的增长。截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。这些数据是微软在与谷歌争夺生

荣耀的人工智能助手叫“YOYO”,也即悠悠;YOYO除了能够实现语音操控等基本功能之外,还拥有智慧视觉、智慧识屏、情景智能、智慧搜索等功能,可以在系统设置页面中的智慧助手里进行相关的设置。

阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。 阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。使用 Python 和 C

人工智能在教育领域的应用主要有个性化学习、虚拟导师、教育机器人和场景式教育。人工智能在教育领域的应用目前还处于早期探索阶段,但是潜力却是巨大的。

人工智能在生活中的应用有:1、虚拟个人助理,使用者可通过声控、文字输入的方式,来完成一些日常生活的小事;2、语音评测,利用云计算技术,将自动口语评测服务放在云端,并开放API接口供客户远程使用;3、无人汽车,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目标;4、天气预测,通过手机GPRS系统,定位到用户所处的位置,在利用算法,对覆盖全国的雷达图进行数据分析并预测。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver CS6
Visual web development tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Atom editor mac version download
The most popular open source editor
