search
HomeBackend DevelopmentPython TutorialPython underlying technology revealed: how to implement model training and prediction

Python underlying technology revealed: how to implement model training and prediction

Nov 08, 2023 pm 03:58 PM
predictModel trainingpython bottom layer

Python underlying technology revealed: how to implement model training and prediction

Revealing the underlying technology of Python: How to implement model training and prediction requires specific code examples

As an easy-to-learn and easy-to-use programming language, Python plays an important role in the field of machine learning being widely used. Python provides a large number of open source machine learning libraries and tools, such as Scikit-Learn, TensorFlow, etc. The use and encapsulation of these open source libraries provide us with a lot of convenience, but if we want to have a deep understanding of the underlying technology of machine learning, just using these libraries and tools is not enough. This article will delve into the underlying machine learning technology of Python, mainly covering the implementation of model training and prediction, including code examples.

1. Model training

The purpose of machine learning is to train a model to predict unknown data. In Python, we can use libraries like Numpy and Scikit-Learn to process and preprocess data. However, before starting to train the model, we need to determine the algorithm and hyperparameters of the model, as well as a suitable evaluation method to select the best model.

  1. Determine the algorithm and hyperparameters of the model

The selection of the algorithm and hyperparameters of the model has a great impact on the performance and accuracy of the model. In Scikit-Learn, we can use GridSearchCV or RandomizedSearchCV to perform grid search and random search to select the best hyperparameters. The following is an example of a simple linear regression algorithm:

from sklearn.linear_model import LinearRegression
from sklearn.model_selection import GridSearchCV

# 数据准备
X_train, y_train = ...

# 线性回归模型
lr = LinearRegression()

# 超参数
params = {
    "fit_intercept": [True, False],
    "normalize": [True, False]
}

# 网格搜索
grid = GridSearchCV(lr, params, cv=5)
grid.fit(X_train, y_train)

# 最佳超参数
best_params = grid.best_params_
print(best_params)
  1. Select evaluation method

In order to choose the best model, we need to choose a suitable evaluation method to measure model performance. In Scikit-Learn, we can use cross-validation to evaluate the performance of the model. The following is a simple example:

from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_val_score

# 数据准备
X_train, y_train = ...

# 线性回归模型
lr = LinearRegression()

# 交叉验证
scores = cross_val_score(lr, X_train, y_train, cv=5)
mean_score = scores.mean()
print(mean_score)
  1. Training model

After determining the model algorithm and hyperparameters, and after choosing an appropriate evaluation method, we can start training the model. In Scikit-Learn, for most models, we can use the fit() method to train the model. The following is a simple linear regression training example:

from sklearn.linear_model import LinearRegression

# 数据准备
X_train, y_train = ...

# 线性回归模型
lr = LinearRegression(fit_intercept=True, normalize=False)

# 训练模型
lr.fit(X_train, y_train)

2. Model prediction

After training the model, we can use the model to make predictions. In Python, making predictions using a trained model is very simple. The following is a simple example of linear regression prediction:

from sklearn.linear_model import LinearRegression

# 数据准备
X_test = ...

# 线性回归模型
lr = LinearRegression(fit_intercept=True, normalize=False)

# 预测
y_pred = lr.predict(X_test)
print(y_pred)

The above code example covers the underlying implementation and code details of Python's machine learning. By in-depth learning and understanding of these underlying technologies, we can better understand the nature of machine learning, and at the same time be more comfortable using machine learning libraries and tools for model training and prediction.

The above is the detailed content of Python underlying technology revealed: how to implement model training and prediction. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python vs. C  : Understanding the Key DifferencesPython vs. C : Understanding the Key DifferencesApr 21, 2025 am 12:18 AM

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Python vs. C  : Which Language to Choose for Your Project?Python vs. C : Which Language to Choose for Your Project?Apr 21, 2025 am 12:17 AM

Choosing Python or C depends on project requirements: 1) If you need rapid development, data processing and prototype design, choose Python; 2) If you need high performance, low latency and close hardware control, choose C.

Reaching Your Python Goals: The Power of 2 Hours DailyReaching Your Python Goals: The Power of 2 Hours DailyApr 20, 2025 am 12:21 AM

By investing 2 hours of Python learning every day, you can effectively improve your programming skills. 1. Learn new knowledge: read documents or watch tutorials. 2. Practice: Write code and complete exercises. 3. Review: Consolidate the content you have learned. 4. Project practice: Apply what you have learned in actual projects. Such a structured learning plan can help you systematically master Python and achieve career goals.

Maximizing 2 Hours: Effective Python Learning StrategiesMaximizing 2 Hours: Effective Python Learning StrategiesApr 20, 2025 am 12:20 AM

Methods to learn Python efficiently within two hours include: 1. Review the basic knowledge and ensure that you are familiar with Python installation and basic syntax; 2. Understand the core concepts of Python, such as variables, lists, functions, etc.; 3. Master basic and advanced usage by using examples; 4. Learn common errors and debugging techniques; 5. Apply performance optimization and best practices, such as using list comprehensions and following the PEP8 style guide.

Choosing Between Python and C  : The Right Language for YouChoosing Between Python and C : The Right Language for YouApr 20, 2025 am 12:20 AM

Python is suitable for beginners and data science, and C is suitable for system programming and game development. 1. Python is simple and easy to use, suitable for data science and web development. 2.C provides high performance and control, suitable for game development and system programming. The choice should be based on project needs and personal interests.

Python vs. C  : A Comparative Analysis of Programming LanguagesPython vs. C : A Comparative Analysis of Programming LanguagesApr 20, 2025 am 12:14 AM

Python is more suitable for data science and rapid development, while C is more suitable for high performance and system programming. 1. Python syntax is concise and easy to learn, suitable for data processing and scientific computing. 2.C has complex syntax but excellent performance and is often used in game development and system programming.

2 Hours a Day: The Potential of Python Learning2 Hours a Day: The Potential of Python LearningApr 20, 2025 am 12:14 AM

It is feasible to invest two hours a day to learn Python. 1. Learn new knowledge: Learn new concepts in one hour, such as lists and dictionaries. 2. Practice and exercises: Use one hour to perform programming exercises, such as writing small programs. Through reasonable planning and perseverance, you can master the core concepts of Python in a short time.

Python vs. C  : Learning Curves and Ease of UsePython vs. C : Learning Curves and Ease of UseApr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Atom editor mac version download

Atom editor mac version download

The most popular open source editor