


How to perform memory management and performance tuning on Linux systems
How to perform memory management and performance tuning of Linux systems
With the continuous development of computer technology, Linux operating systems are increasingly used in the server field. In Linux systems, memory management and performance tuning are important links to ensure the normal operation and efficient work of the system. This article will introduce how to perform memory management and performance tuning on Linux systems, and provide specific code examples.
1. Memory management of Linux system
In Linux system, memory management is one of the core functions of the operating system. It mainly includes memory allocation, memory recycling and memory usage monitoring. The following introduces some common memory management operations in the form of specific code examples.
- Memory allocation
Memory allocation refers to the operating system allocating physical memory to applications. The Linux system provides a variety of memory allocation functions, such as malloc(), calloc(), realloc(), etc. Here is an example that shows how to use the malloc() function to allocate a block of memory: The memory is released so that it can be allocated again to other applications. In Linux systems, use the free() function to reclaim memory. The following is an example that shows how to use the free() function to release previously allocated memory:
#include <stdio.h> #include <stdlib.h> int main() { int size = 100; int *ptr = malloc(sizeof(int) * size); if(ptr == NULL) { printf("内存分配失败! "); return -1; } printf("内存分配成功! "); // 使用ptr进行内存操作 free(ptr); // 释放内存 return 0; }
- Memory usage monitoring
Memory usage monitoring refers to real-time monitoring Memory usage in the system so that memory allocation strategies can be adjusted in a timely manner. In Linux systems, you can use the command line tool top or through the /proc file system to monitor memory usage. The following is an example that shows how to read memory usage through the /proc file system:
#include <stdio.h> #include <stdlib.h> int main() { int size = 100; int *ptr = malloc(sizeof(int) * size); if(ptr == NULL) { printf("内存分配失败! "); return -1; } printf("内存分配成功! "); // 使用ptr进行内存操作 free(ptr); // 释放内存 printf("内存释放成功! "); return 0; }
- 2. Performance tuning of Linux systems
- In Linux systems, performance tuning is for Improve system response speed and processing capabilities to better meet application needs. Some common performance tuning operations are introduced below in the form of specific code examples.
The performance of the file system has an important impact on the overall performance of the system. The Linux system provides some parameters for tuning, such as the read and write cache and log mode of the file system. The following is an example that shows how to use the tune2fs command to adjust the parameters of the file system:
#include <stdio.h> int main() { FILE *file = fopen("/proc/meminfo", "r"); if(file == NULL) { printf("打开/proc/meminfo文件失败! "); return -1; } char line[100]; // 逐行读取文件内容 while(fgets(line, sizeof(line), file)) { printf("%s", line); // 输出每一行内容 } fclose(file); return 0; }
- Optimizing network configuration
Network configuration also has a great impact on the performance of the system. The Linux system provides some parameters for tuning, such as the receive buffer size and send queue size of the network card. The following is an example that shows how to use the ifconfig command to adjust the receive buffer size of the network card:
# 调整文件系统的读写缓存 tune2fs -o journal_data_writeback /dev/sda1 # 调整文件系统的日志方式 tune2fs -o journal_dev /dev/sda1
- Optimizing process scheduling
Process scheduling affects system performance and response speed Crucial. The Linux system provides some parameters for tuning, such as process priority and scheduling strategy. The following is an example that shows how to use the nice command to adjust the priority of a process:
# 调整网卡的接收缓冲区大小 ifconfig eth0 rxqueuelen 1000
- Summary:
- This article introduces how to perform memory management and performance tuning of Linux systems, and provides Specific code examples. Through reasonable memory management and appropriate performance tuning, the efficiency and stability of the Linux system can be improved to better meet application needs. However, due to differences in different system environments and diversity of application scenarios, specific memory management and performance tuning operations may vary and need to be adjusted and optimized based on actual conditions.
The above is the detailed content of How to perform memory management and performance tuning on Linux systems. For more information, please follow other related articles on the PHP Chinese website!

MaintenanceModeinLinuxisaspecialbootenvironmentforcriticalsystemmaintenancetasks.Itallowsadministratorstoperformtaskslikeresettingpasswords,repairingfilesystems,andrecoveringfrombootfailuresinaminimalenvironment.ToenterMaintenanceMode,interrupttheboo

The core components of Linux include kernel, file system, shell, user and kernel space, device drivers, and performance optimization and best practices. 1) The kernel is the core of the system, managing hardware, memory and processes. 2) The file system organizes data and supports multiple types such as ext4, Btrfs and XFS. 3) Shell is the command center for users to interact with the system and supports scripting. 4) Separate user space from kernel space to ensure system stability. 5) The device driver connects the hardware to the operating system. 6) Performance optimization includes tuning system configuration and following best practices.

The five basic components of the Linux system are: 1. Kernel, 2. System library, 3. System utilities, 4. Graphical user interface, 5. Applications. The kernel manages hardware resources, the system library provides precompiled functions, system utilities are used for system management, the GUI provides visual interaction, and applications use these components to implement functions.

Linux maintenance mode can be entered through the GRUB menu. The specific steps are: 1) Select the kernel in the GRUB menu and press 'e' to edit, 2) Add 'single' or '1' at the end of the 'linux' line, 3) Press Ctrl X to start. Maintenance mode provides a secure environment for tasks such as system repair, password reset and system upgrade.

The steps to enter Linux recovery mode are: 1. Restart the system and press the specific key to enter the GRUB menu; 2. Select the option with (recoverymode); 3. Select the operation in the recovery mode menu, such as fsck or root. Recovery mode allows you to start the system in single-user mode, perform file system checks and repairs, edit configuration files, and other operations to help solve system problems.

The core components of Linux include the kernel, file system, shell and common tools. 1. The kernel manages hardware resources and provides basic services. 2. The file system organizes and stores data. 3. Shell is the interface for users to interact with the system. 4. Common tools help complete daily tasks.

The basic structure of Linux includes the kernel, file system, and shell. 1) Kernel management hardware resources and use uname-r to view the version. 2) The EXT4 file system supports large files and logs and is created using mkfs.ext4. 3) Shell provides command line interaction such as Bash, and lists files using ls-l.

The key steps in Linux system management and maintenance include: 1) Master the basic knowledge, such as file system structure and user management; 2) Carry out system monitoring and resource management, use top, htop and other tools; 3) Use system logs to troubleshoot, use journalctl and other tools; 4) Write automated scripts and task scheduling, use cron tools; 5) implement security management and protection, configure firewalls through iptables; 6) Carry out performance optimization and best practices, adjust kernel parameters and develop good habits.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Dreamweaver Mac version
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

WebStorm Mac version
Useful JavaScript development tools