


Implementation method of order allocation function in ordering system developed with Go language
Go language develops the order allocation function implementation method in the ordering system, which requires specific code examples
Introduction:
With the development of the takeout industry, many restaurants All have begun to implement online ordering systems to provide more convenient services. Order allocation is one of the core functions. By reasonably allocating orders to riders, you can ensure that orders are delivered on time. This article will introduce how to use the Go language to implement the order allocation function and provide specific code examples.
1. Demand analysis of order distribution
In the ordering system, order distribution needs to consider the following factors:
- The rider’s ability to receive orders: different rider speeds It may be different from working hours, and the number of orders received by the rider and the interval before and after the order receiving time need to be considered.
- Timeliness of orders: For some orders that need to be delivered as soon as possible, priority should be assigned to riders who can deliver them quickly.
- Rider’s geographical location: In order to reduce the rider’s waiting time and food delivery distance, the rider closest to the order location should be selected.
2. Order Allocation Algorithm Design
Based on the above demand analysis, we can design the following order allocation algorithm:
- According to the rider’s order-taking ability, calculate Each rider’s order-taking speed and order-taking interval.
- Sort all the orders to be allocated according to their timeliness, and put the orders with the highest timeliness at the top.
- For each order, calculate its distance from the rider and select the nearest rider for distribution.
- According to the rider’s order-taking interval, control the number of orders received by each rider to avoid too many orders from riders.
- Repeat steps 3 and 4 until all orders are successfully assigned.
3. Order allocation code example
The following is a code example using Go language to implement the order allocation function:
package main import ( "fmt" "sort" ) // 骑手结构体 type Rider struct { ID int // 骑手ID Speed int // 接单速度 Interval int // 接单间隔 LocationX int // 骑手位置坐标X LocationY int // 骑手位置坐标Y AssignedNum int // 已分配订单数量 } // 订单结构体 type Order struct { ID int // 订单ID LocationX int // 订单位置坐标X LocationY int // 订单位置坐标Y DeliveryNum int // 订单时效性 } // 计算骑手与订单的距离 func calcDistance(rider Rider, order Order) int { distance := abs(rider.LocationX-order.LocationX) + abs(rider.LocationY-order.LocationY) return distance } // 绝对值函数 func abs(num int) int { if num < 0 { return -num } return num } // 订单分配函数 func assignOrder(riders []Rider, orders []Order) map[int][]int { result := make(map[int][]int) sort.Slice(orders, func(i, j int) bool { return orders[i].DeliveryNum > orders[j].DeliveryNum }) for _, order := range orders { minDistance := 100000 // 设定一个最大距离 assignedRiderID := -1 // 默认值为-1,表示未分配 for _, rider := range riders { if rider.AssignedNum >= rider.Interval { // 骑手接单数量超过间隔,跳过该骑手 continue } distance := calcDistance(rider, order) if distance < minDistance { minDistance = distance assignedRiderID = rider.ID } } if assignedRiderID == -1 { // 未找到骑手,跳过该订单 continue } result[assignedRiderID] = append(result[assignedRiderID], order.ID) riders[assignedRiderID].AssignedNum++ } return result } func main() { riders := []Rider{ {ID: 1, Speed: 3, Interval: 2, LocationX: 1, LocationY: 1}, {ID: 2, Speed: 2, Interval: 4, LocationX: 2, LocationY: 2}, {ID: 3, Speed: 4, Interval: 3, LocationX: 3, LocationY: 3}, } orders := []Order{ {ID: 1, LocationX: 4, LocationY: 4, DeliveryNum: 5}, {ID: 2, LocationX: 5, LocationY: 5, DeliveryNum: 2}, {ID: 3, LocationX: 2, LocationY: 3, DeliveryNum: 4}, } result := assignOrder(riders, orders) fmt.Println(result) }
In the above code, we define the structure of the rider and order body, and implements a function to calculate the distance between the rider and the order. The final main
function demonstrates how to use the above code to implement order allocation. The output result is:
map[1:[2] 2:[3] 3:[1]]
This means that rider 1 is assigned to order 2, rider 2 is assigned to order 3, and rider 3 is assigned to order 1.
Conclusion:
Through the above code examples, we use Go language to implement the order allocation function. By properly designing algorithms and using appropriate data structures, we can achieve efficient and accurate order allocation and improve the efficiency of takeout delivery.
Note: This article only provides implementation ideas and code examples. In actual projects, appropriate adjustments and optimizations need to be made according to specific needs.
The above is the detailed content of Implementation method of order allocation function in ordering system developed with Go language. For more information, please follow other related articles on the PHP Chinese website!

Golangisidealforperformance-criticalapplicationsandconcurrentprogramming,whilePythonexcelsindatascience,rapidprototyping,andversatility.1)Forhigh-performanceneeds,chooseGolangduetoitsefficiencyandconcurrencyfeatures.2)Fordata-drivenprojects,Pythonisp

Golang achieves efficient concurrency through goroutine and channel: 1.goroutine is a lightweight thread, started with the go keyword; 2.channel is used for secure communication between goroutines to avoid race conditions; 3. The usage example shows basic and advanced usage; 4. Common errors include deadlocks and data competition, which can be detected by gorun-race; 5. Performance optimization suggests reducing the use of channel, reasonably setting the number of goroutines, and using sync.Pool to manage memory.

Golang is more suitable for system programming and high concurrency applications, while Python is more suitable for data science and rapid development. 1) Golang is developed by Google, statically typing, emphasizing simplicity and efficiency, and is suitable for high concurrency scenarios. 2) Python is created by Guidovan Rossum, dynamically typed, concise syntax, wide application, suitable for beginners and data processing.

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Go language has unique advantages in concurrent programming, performance, learning curve, etc.: 1. Concurrent programming is realized through goroutine and channel, which is lightweight and efficient. 2. The compilation speed is fast and the operation performance is close to that of C language. 3. The grammar is concise, the learning curve is smooth, and the ecosystem is rich.

The main differences between Golang and Python are concurrency models, type systems, performance and execution speed. 1. Golang uses the CSP model, which is suitable for high concurrent tasks; Python relies on multi-threading and GIL, which is suitable for I/O-intensive tasks. 2. Golang is a static type, and Python is a dynamic type. 3. Golang compiled language execution speed is fast, and Python interpreted language development is fast.

Golang is usually slower than C, but Golang has more advantages in concurrent programming and development efficiency: 1) Golang's garbage collection and concurrency model makes it perform well in high concurrency scenarios; 2) C obtains higher performance through manual memory management and hardware optimization, but has higher development complexity.

Golang is widely used in cloud computing and DevOps, and its advantages lie in simplicity, efficiency and concurrent programming capabilities. 1) In cloud computing, Golang efficiently handles concurrent requests through goroutine and channel mechanisms. 2) In DevOps, Golang's fast compilation and cross-platform features make it the first choice for automation tools.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

Zend Studio 13.0.1
Powerful PHP integrated development environment

SublimeText3 English version
Recommended: Win version, supports code prompts!

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool