What is the difference between make and new in go language?
Difference: In the Go language, make and new both allocate memory (on the heap), but make is only used for initialization of slice, map and channel (non-zero values); while new is used for types Memory is allocated, and memory is set to zero. make returns the reference type itself; new returns a pointer to the type.
#The operating environment of this article: windows10 system, GO 1.11.2, thinkpad t480 computer.
Related recommendations: "go tutorial"
In the Go language, new and make are both primitives used for memory allocation (allocation primitives). Simply put, new only allocates memory, and make is used for initialization of slice, map, and channel.
new
The new(T) function is a built-in function that allocates memory.
We all know that for an existing variable, its pointer can be assigned.
Example
var p int var v *int v = &p *v = 11 fmt.Println(*v)
So, what happens if it is not a variable that already exists? Can it be assigned a value directly?
Example
var v *int *v = 8 fmt.Println(*v)
The result will be the following error
panic: runtime error: invalid memory address or nil pointer dereference
[signal 0xc0000005 code=0x1 addr=0x0 pc =0x48df66]
How to solve it? This can be solved by Go providing new to initialize an address.
var v *int v = new(int) *v = 8 fmt.Println(*v)
Then let’s analyze it
var v *int fmt.Println(*v) fmt.Println(v) //<nil> v = new(int) fmt.Println(*v)// fmt.Println(v)//0xc00004c088</nil>
We can see that when a pointer variable is initialized, its value is nil, and the value of nil cannot be assigned directly. Through new, it returns a pointer to a newly allocated type int. The pointer value is 0xc00004c088. The value of the content pointed to by this pointer is zero value.
At the same time, it should be noted that the zero value of different pointer types is different.
Example
type Name struct { P string } var av *[5]int var iv *int var sv *string var tv *Name av = new([5]int) fmt.Println(*av) //[0 0 0 0 0 0] iv = new(int) fmt.Println(*iv) // 0 sv = new(string) fmt.Println(*sv) // tv = new(Name) fmt.Println(*tv) //{}
The above describes how to assign values to ordinary types after new() is processed. Here we will talk about composite types (array, slice, map, channel, etc.), new( ), how to assign value after processing.
Array example
var a [5]int fmt.Printf("a: %p %#v \n", &a, a)//a: 0xc04200a180 [5]int{0, 0, 0, 0, 0} av := new([5]int) fmt.Printf("av: %p %#v \n", &av, av)//av: 0xc000074018 &[5]int{0, 0, 0, 0, 0} (*av)[1] = 8 fmt.Printf("av: %p %#v \n", &av, av)//av: 0xc000006028 &[5]int{0, 8, 0, 0, 0}
silce example
var a *[]int fmt.Printf("a: %p %#v \n", &a, a) //a: 0xc042004028 (*[]int)(nil) av := new([]int) fmt.Printf("av: %p %#v \n", &av, av) //av: 0xc000074018 &[]int(nil) (*av)[0] = 8 fmt.Printf("av: %p %#v \n", &av, av) //panic: runtime error: index out of range
map example
var m map[string]string fmt.Printf("m: %p %#v \n", &m, m)//m: 0xc042068018 map[string]string(nil) mv := new(map[string]string) fmt.Printf("mv: %p %#v \n", &mv, mv)//mv: 0xc000006028 &map[string]string(nil) (*mv)["a"] = "a" fmt.Printf("mv: %p %#v \n", &mv, mv)//这里会报错panic: assignment to entry in nil map
channel example
cv := new(chan string) fmt.Printf("cv: %p %#v \n", &cv, cv)//cv: 0xc000074018 (*chan string)(0xc000074020) //cv <p>Through the above example we see that the array passes new processing, the array av is initialized with zero value. Although the array is a composite type, it is not a reference type. Other silce, map, and channel types are also reference types. Go will initialize the reference type to nil, and nil cannot be assigned directly. And you cannot use new to allocate memory. Cannot be assigned directly. So what would it be like to use the make function? </p><h3 id="make">make</h3><p>Example</p><pre class="brush:php;toolbar:false">av := make([]int, 5) fmt.Printf("av: %p %#v \n", &av, av) //av: 0xc000046400 []int{0, 0, 0, 0, 0} av[0] = 1 fmt.Printf("av: %p %#v \n", &av, av) //av: 0xc000046400 []int{1, 0, 0, 0, 0} mv := make(map[string]string) fmt.Printf("mv: %p %#v \n", &mv, mv) //mv: 0xc000074020 map[string]string{} mv["m"] = "m" fmt.Printf("mv: %p %#v \n", &mv, mv) //mv: 0xc000074020 map[string]string{"m":"m"} chv := make(chan string) fmt.Printf("chv: %p %#v \n", &chv, chv) //chv: 0xc000074028 (chan string)(0xc00003e060) go func(message string) { chv <p>make can not only open up a memory, but also initialize its zero value for the type of this memory. </p><p>It can also be used in conjunction with new</p><p>Example</p><pre class="brush:php;toolbar:false">var mv *map[string]string fmt.Printf("mv: %p %#v \n", &mv, mv)//mv: 0xc042004028 (*map[string]string)(nil) mv = new(map[string]string) fmt.Printf("mv: %p %#v \n", &mv, mv)//mv: 0xc000006028 &map[string]string(nil) (*mv) = make(map[string]string) (*mv)["a"] = "a" fmt.Printf("mv: %p %#v \n", &mv, mv)//mv: 0xc042004028 &map[string]string{"a":"a"}
Allocate a memory to the pointer variable mv through new and assign it a memory address. Map is a reference type, and its zero value is nil. Use make to initialize map, and then the variable can be assigned a value to the pointer variable mv using *
.
Summary:
- make and new are both built-in functions used by golang to allocate memory, and allocate memory on the heap. make allocates memory and initializes memory. new only clears the memory and does not initialize the memory.
- make returns the reference type itself; while new returns a pointer to the type.
- make can only be used to allocate and initialize data of types slice, map, and channel; new can allocate any type of data.
For more programming-related knowledge, please visit: Programming Teaching! !
The above is the detailed content of What is the difference between make and new in go language?. For more information, please follow other related articles on the PHP Chinese website!

Go's "strings" package provides rich features to make string operation efficient and simple. 1) Use strings.Contains() to check substrings. 2) strings.Split() can be used to parse data, but it should be used with caution to avoid performance problems. 3) strings.Join() is suitable for formatting strings, but for small datasets, looping = is more efficient. 4) For large strings, it is more efficient to build strings using strings.Builder.

Go uses the "strings" package for string operations. 1) Use strings.Join function to splice strings. 2) Use the strings.Contains function to find substrings. 3) Use the strings.Replace function to replace strings. These functions are efficient and easy to use and are suitable for various string processing tasks.

ThebytespackageinGoisessentialforefficientbyteslicemanipulation,offeringfunctionslikeContains,Index,andReplaceforsearchingandmodifyingbinarydata.Itenhancesperformanceandcodereadability,makingitavitaltoolforhandlingbinarydata,networkprotocols,andfileI

Go uses the "encoding/binary" package for binary encoding and decoding. 1) This package provides binary.Write and binary.Read functions for writing and reading data. 2) Pay attention to choosing the correct endian (such as BigEndian or LittleEndian). 3) Data alignment and error handling are also key to ensure the correctness and performance of the data.

The"bytes"packageinGooffersefficientfunctionsformanipulatingbyteslices.1)Usebytes.Joinforconcatenatingslices,2)bytes.Bufferforincrementalwriting,3)bytes.Indexorbytes.IndexByteforsearching,4)bytes.Readerforreadinginchunks,and5)bytes.SplitNor

Theencoding/binarypackageinGoiseffectiveforoptimizingbinaryoperationsduetoitssupportforendiannessandefficientdatahandling.Toenhanceperformance:1)Usebinary.NativeEndianfornativeendiannesstoavoidbyteswapping.2)BatchReadandWriteoperationstoreduceI/Oover

Go's bytes package is mainly used to efficiently process byte slices. 1) Using bytes.Buffer can efficiently perform string splicing to avoid unnecessary memory allocation. 2) The bytes.Equal function is used to quickly compare byte slices. 3) The bytes.Index, bytes.Split and bytes.ReplaceAll functions can be used to search and manipulate byte slices, but performance issues need to be paid attention to.

The byte package provides a variety of functions to efficiently process byte slices. 1) Use bytes.Contains to check the byte sequence. 2) Use bytes.Split to split byte slices. 3) Replace the byte sequence bytes.Replace. 4) Use bytes.Join to connect multiple byte slices. 5) Use bytes.Buffer to build data. 6) Combined bytes.Map for error processing and data verification.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 Chinese version
Chinese version, very easy to use

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software
